Answer: 5 is the molarity
Explanation:
The molarity formula is moles over liters and that in your case is 2.50 moles divided by .500 L which results in 5 which is your answear hope this helped god bless
Answer:
Bi (Bismuth)
Ag (Silver)
Li (Lithium)
Explanation:
Xe (Xenon) and I (Iodine) are non-metals. They cannot from a metallic bond because metallic bonds are bonds between metals only.
Answer is: D. Cl (chlorine).
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Barium, potassium and arsenic are metals (easily lost valence electrons), chlorine is nonmetal (easily gain electrons).
Alkaline metals (in this example, potassium) have lowest ionizations energy and easy remove valence electrons (one electron), earth alkaline metals (in this example, barium) have higher ionization energy than alkaline metals, because they have two valence electrons.
Nonmetals (in this example chlorine) are far right in the main group and they have highest ionization energy, because they have many valence electrons.
mass of PbI₂ = 27.6606 g
<h3>Further explanation</h3>
Given
Pb(NO₃)₂ + NaI → PbI₂ + NaNO₃
28.0 grams of Pb(NO₃)₂ react with 18.0 grams of NaI
Required
mass of PbI₂
Solution
Balanced equation
Pb(NO₃)₂ + 2NaI → PbI₂ + 2NaNO₃
The principle of a balanced reaction is the number of atoms in the reactants = the number of atoms in the product
mol Pb(NO₃)₂ :
= 28 : 331,2 g/mol
= 0.0845
mol NaI :
= 18 : 149,89 g/mol
= 0.12
Limiting reactant : mol : coefficient
Pb(NO₃)₂ : 0.0845 : 1 = 0.0845
NaI : 0.12 : 2 = 0.06
NaI limiting reactant (smaller ratio)
mol PbI₂ based on NaI
= 1/2 x 0.12 = 0.06
Mass PbI₂ :
= 0.06 x 461,01 g/mol
= 27.6606 g
Answer true
Explanation:becoz it's true