1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
2 years ago
8

A camera with a 50.0-mm focal length lens is being used to photograph a person standing 3.00 m away. (a) How far from the lens m

ust the film be? (b) If the film is 36.0 mm high, what fraction of a 1.75-m-tall person will fit on it? (c) Discuss how reasonable this seems, based on your experience in taking or posing for photographs.
Physics
1 answer:
kirill [66]2 years ago
3 0

a) 50.8 mm

b) The whole image (1:1)

c) It seems reasonable

Explanation:

a)

To project the image on the film, the distance of the film from the lens must be equal to the distance of the image from the lens. This can be found by using the lens equation:

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where

f is the focal length of the lens

p is the distance of the object from the lens

q is the distance of the image from the lens

In this problem:

f = 50.0 mm = 0.050 m is the focal length (positive for a convex lens)

p = 3.00 m is the distance of the person from the lens

Therefore, we can find q:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{0.050}-\frac{1}{3.00}=19.667m^{-1}\\q=\frac{1}{19.667}=0.051 m=50.8 mm

b)

Here we need to find the height of the image first.

This can be done by using the magnification equation:

\frac{y'}{y}=-\frac{q}{p}

where:

y' is the height of the image

y = 1.75 m is the height of the real person

q = 50.8 mm = 0.0508 m is the distance of the image from the lens

p = 3.00 m is the distance of the person from the lens

Solving for y', we find:

y'=-\frac{qy}{p}=-\frac{(0.0508)(1.75)}{3.00}=-0.0296 m=-29.6mm

(the negative sign means the image is inverted)

Therefore, the size of the image (29.6 mm) is smaller than the size of the film (36.0 mm), so the whole image can fit into the film.

c)

This seems reasonable: in fact, with a 50.0 mm focal length, if we try to take the picture of a person at a distance of 3.00 m, we are able to capture the whole image of the person in the photo.

You might be interested in
After striking both mirrors, at what angle relative to the incoming ray does the outgoing ray emerge?
PIT_PIT [208]
The appropriate response is Zero degrees. The beam will leave the two mirrors along a way parallel to the one it came in on. This is the guideline of the corner reflector, which is frequently utilized as a radar target. Take note of that the corner reflector utilizes three reflecting surfaces (that are set up at 90o from each other) rather than the two like are being utilized here. Wikipedia has a truly awesome drawing that shows this two-dimentional issue pleasantly. A moment connection is given to the article on the corner reflector and the 3-D angles.
4 0
2 years ago
e force acting between two charged particles A and B is 5.2 × 10-5 newtons. Charges A and B are 2.4 × 10-2 meters apart. If the
anastassius [24]
The force acting between the particles is

F=k \frac{Q_{1}Q_{2}}{r^2}
Then
Q_{2}= \frac{5.2 \times 10^-^5 \times 0.024^2}{ 9.0 \times 10^9 7.2 \times 10^-^8} =4.622 \times 10^-^1^1C




7 0
2 years ago
Read 2 more answers
The dimension line is connected to the part being measured by _______________. A. Hidden lines B. Extension lines C. Visible lin
kondaur [170]
B: Extension Lines! You could have just searched this up on google
3 0
3 years ago
Read 2 more answers
Determine the mechanical energy of this object a 1-kg ball rolls on the ground at <br> m/s
dedylja [7]
Mechanical energy = potential energy + kinetic energy
The ball is on the ground so it has no potential energy. that's all i know.
8 0
3 years ago
Two objects having masses m1 and m2 are connected to each other as shown in the figure and are released from rest. There is no f
tankabanditka [31]

Answer:m_1g

Explanation:

Given

Two masses m_1  and m_2  is released and there is tension T in the string

Suppose a is the acceleration of the system

Therefore from Diagram

For m_1

T-m_1g=m_1a

T=m_1(g+a)------1

for m_2 body

m_2g-T=m_2a

T=m_2(g-a)-------2

From above two Equation it is said that Tension is greater than m_1g and less than m_2g

m_1g

4 0
2 years ago
Read 2 more answers
Other questions:
  • Problem 6.056 Air enters a compressor operating at steady state at 15 lbf/in.2, 80°F and exits at 275°F. Stray heat transfer and
    7·1 answer
  • The bending of light as it passes into a transparent material of different optical intensity is known as
    11·2 answers
  • What type of mechanical wave needs a medium?
    9·1 answer
  • Why is a silver spoon a good conductor
    15·2 answers
  • Phosphate never enters the<br> O atmosphere<br> O ground<br> O water<br> O ocean
    11·1 answer
  • A person driving a car suddenly applies the brakes. The car takes 4 s to come to rest while traveling 20 m at constant accelerat
    13·1 answer
  • Please help me on these questions in the picture.
    14·2 answers
  • A circuit featuring multiple paths through which current can flow is best classified into which category?
    16·2 answers
  • why it's impossible for baseball players to make sharp turns when moving form base to base? explain using Newton 1st law "object
    7·1 answer
  • Grade 8 Science Admin. May 2018 Released
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!