The answer is protons and neutrons (C)
Answer:
d = 2.54 [m]
Explanation:
Through the theorem of work and energy conservation, we can find the work that is done. Considering that the energy in the initial state is only kinetic energy, while the energy in the final state is also kinetic, however, this is zero since the body stops.

where:
W = work [J]
Ek1 = kinetic energy at initial state [J]
Ek2 = kinetic energy at the final state = 0.
We must remember that kinetic energy can be calculated by means of the following expression.
![\frac{1}{2} *m*v^{2}-W=0\\W= \frac{1}{2} *4*(5)^{2}\\W= 50 [J]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D-W%3D0%5C%5CW%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2A4%2A%285%29%5E%7B2%7D%5C%5CW%3D%2050%20%5BJ%5D)
We know that work is defined as the product of force by distance.

where:
F = force [N]
d = distance [m]
But the friction force is equal to the product of the normal force (body weight) by the coefficient of friction.
![f=m*g*0.5\\f = 4*9.81*0.5\\f = 19.62 [N]](https://tex.z-dn.net/?f=f%3Dm%2Ag%2A0.5%5C%5Cf%20%3D%204%2A9.81%2A0.5%5C%5Cf%20%3D%2019.62%20%5BN%5D)
Now solving the equation for the work.
![d=W/F\\d = 50/19.62\\d = 2.54[m]](https://tex.z-dn.net/?f=d%3DW%2FF%5C%5Cd%20%3D%2050%2F19.62%5C%5Cd%20%3D%202.54%5Bm%5D)
From the definition of average velocity,
,
and the fact that constant acceleration means

we can solve for the time
:

I’m not sure if its correct but I think it’s focal Ray point
For concave mirrors, some generalizations can be made to simplify ray construction. They are: An incident ray traveling parallel to the principal axis will reflect and pass through the focal point. An incident ray traveling through the focal point will reflect and travel parallel to the principal axis.
Answer:
The temperature of the core raises by
every second.
Explanation:
Since the average specific heat of the reactor core is 0.3349 kJ/kgC
It means that we require 0.3349 kJ of heat to raise the temperature of 1 kg of core material by 1 degree Celsius
Thus reactor core whose mass is
will require

energy to raise it's temperature by 1 degree Celsius in 1 second
Hence by the concept of proportionately we can infer 150 MW of power will increase the temperature by