The potential energy of the lemming is 1.53 J
Explanation:
The potential energy (PE) of an object is the energy possessed by the object due to its position in the Earth's gravitational field, and it is given by:

where:
m is the mass of the object
is the acceleration of gravity
h is the height of the object relative to the ground
In this problem:
m = 0.0780 kg is the mass of the lemming
We want to find the potential energy when the height is
h = 2.00 m
Therefore, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
6.26 m/s
Explanation:
Pretty slow.... the PE (Potential Energy) at 2m will be converted to KE (Kinetic Energy) at the bottom of the track (neglecting friction)
PE = KE
mgh = 1/2 mv^2 divide both sides of the equation by 'm'
gh = 1/2 v^2 multiply both sides by 2
2 gh = v^2 take sqrt of both sides
v = sqrt ( 2gh) = sqrt ( 2*9.81*2) = 6.26 m/s
The electrical forces pulls nucleus apart
Answer:
Alternating
Explanation:
It is alternating because it is easy to distribute long distance.
Direct current is found in batteries and have large voltage drop over distance.
Answer:
P=(2 nm, 8mn)
Explanation:
Given :
Position of positively charged particle at origin, 
Position of desired magnetic field, 
Magnitude of desired magnetic field, 
Let q be the positive charge magnitude placed at origin.
<u>We know the distance between the two Cartesian points is given as:</u>

<u>For the electric field effect to be zero at point D we need equal and opposite field at the point.</u>




as we know that the electric field lines emerge radially outward of a positive charge so the second charge will be at equally opposite side of the given point.
assuming that the second charge is placed at (x,y) nano-meters.
Therefore,

and
