Answer:
I gonna give you the number so but you need to round 6.19047619048
Explanation:
- This is a speed formula so you would use the formula speed=distance/time
- You need to rearrange it to time=distance/speed
- So you need to divide 13m by 2.1 m/s
Answer:
Physics
Explanation:
Explanation:
We can use the Theorem of Work (W) and Kinetic Energy (K):
W=ΔK=Kf−Ki
it basically tells us that the work done on our system will show up as change in Kinetic Energy:
We know that the initial Kinetic Energy, Ki=12mv2i, is zero (starting from rest) while the final will be equal to 352J; Work will be force time displacement. so we get:
F⋅d=Ff
45d=352
and so:
d=35245=7.8≈8m
Answer:
please do well to ask questions in English. This will help people provide you answers ASAP. Thank you
when approaching the front of an idling jet engine, the hazard area extends forward of the engine approximately 25 feet.
<h3>What impact, if any, would jet fuel and aviation gasoline have on a turbine engine?</h3>
Tetraethyl lead, which is present in gasoline, deposits itself on the turbine blades. Because jet fuel has a higher viscosity than aviation gasoline, it may retain impurities with greater ease.
Once the gasoline charge has been cleared, start the engine manually or with an electric starter while cutting the ignition and using the maximum throttle.
On the final approach, the aeroplane needs to be re-trimmed to account for the altered aerodynamic forces. A substantial nose-down tendency results from the airflow producing less lift on the wings and less downward force on the horizontal stabiliser due to the reduced power and slower velocity.
Learn more about turbine engine refer
brainly.com/question/807662
#SPJ4
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :

t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).