Answer:
v = √ 2 G M/
Explanation:
To find the escape velocity we can use the concept of mechanical energy, where the initial point is the surface of the earth and the end point is at the maximum distance from the projectile to the Earth.
Initial
Em₀ = K + U₀
Final
= 
The kinetic energy is k = ½ m v²
The gravitational potential energy is U = - G m M / r
r is the distance measured from the center of the Earth
How energy is conserved
Em₀ = 
½ mv² - GmM /
= -GmM / r
v² = 2 G M (1 /
– 1 / r)
v = √ 2GM (1 /
– 1 / r)
The escape velocity is that necessary to take the rocket to an infinite distance (r = ∞), whereby 1 /∞ = 0
v = √ 2GM /
Answer:
Force on front axle = 6392.85 N
Force on rear axle = 8616.45 N
Explanation:
As we know that the weight of the car is balanced by the normal force on the front wheel and rear wheels
Now we know that



now we know that distance between the axis is 2.70 m and centre of mass is 1.15 m behind front axle
so we can write torque balance about its center of mass


now from above equation

now we have

now the other force is given as

1. b
2. c
3. a
4. a
5. b
6. should be 2400? unless u put the wrong numbers, it is probably 240 then
Answer:
one thousandth of a liter (0.002 pint).
Explanation: