Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum

Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation



Hence, The recoil velocity is 0.354 m/s.
Let volume of empty boat be = 100% = 1V
and mass of boat be M
In water 10%, 0.1V of the volume is submerged.
Mass, m of 1200kg increases the submerging from 10%, 0.1V to 70%, 0.7V
M leads to 0.1V boat submerging
boat submerging.
M + 1200kg leads to 0.7V boat submerging.
This is 60%, 0.6 V increase
By comparison
(M+1200kg) * 0.1V = 0.7V * M
0.1M + 120kg = 0.7M
120kg = 0.7M - 0.1M
120kg = 0.6M
M = (120/0.6)kg
M = 200kg.
The mass of the boat is 200kg.
solution:
radius of steel ball(r)=5cm=0.05m
density of ball =8000kgm
terminal velocity(v)=25m/s^2
density of air( d) =1.29 kgm
now
volume of ball(V)=4/3pir^3=1.33×3.14×0.05^3=0.00052 m^3
density of ball= mass of ball/Volume of ball
or, 8000=m/0.00052
or, m=4.16 kg
weight of the ball (W)= mg=4.16×10=41.6 N
viscous force(F)=6 × pi × eta × r × v
=6×3.14×eta×0.05×25
=23.55×eta
To attain the terminal velocity,
Fiscous force=Weight
or, 23.55× eta = 41.6
or, eta = 1.76
whete eta is the coefficient of viscosity.
Answer:
-54.12 V
Explanation:
The work done by this force is equal to the difference between the final value and the initial value of the energy. Since the charge starts from the rest its initial kinetic energy is zero.

The change in electrostatic potential energy
, of one point charge q is defined as the product of the charge and the potential difference.
