Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Answer:
Option A. 1 bar = 1 atm
Explanation:
Pressure has various units of measurement. Each unit of measurement can be converted to other units of measurement. For example:
1 atm = 1 bar
1 atm = 760 mmHg
1 atm = 760 torr
1 atm = 1×10⁵ N/m²
1 atm = 1×10⁵ Pa
With the above conversion scale we can convert from one unit to the other.
Considering the question given above, it is evident from the coversion scale illustrated above that only option A is correct.
Thus,
1 bar = 1 atm
Here
- Acceleration and initial velocities are constant.
According to first equation of kinematics.




- Time was t at velocity v
- Time will be 4t at velocity 4v
The correct answer is the third one: move toward the ground state. Remember please that Elements produce their spectrum when their electrons move toward the ground state. Hope this is very useful
Well you’d have a force due to gravity, the normal force which will be perpendicular to the sources (meaning you’ll have components to this vector), and you’d have the force of friction opposing the motion of the box. I’m also assuming there’s no air resistance. In this case you’d have three vector forces.