1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kvv77 [185]
3 years ago
12

A block of lead has dimensions of 4.50 cm by 5.20 cm by 6.00 cm. The block weighs 1587 g. From this information, calculate the d

ensity of lead.
Physics
1 answer:
IrinaVladis [17]3 years ago
3 0
Density = mass / volume. Mass = 1587g. Volume = 4.5cm x 5.2cm x 6cm = 140.4 cubic-cm. Mass/volume = 1587/140.4 = 11.3 g/cm^3.
You might be interested in
An engineer has the task of producing an aluminum alloy with a density of 3.0 grams per cubic centimeter. She comes up with the
pochemuha

Answer:

The best option is for the following option m = 15 [g] and V = 5 [cm³]

Explanation:

We have that the density of a body is defined as the ratio of mass to volume.

Ro =m/V

where:

Ro = density = 3 [g/cm³]

Now we must determine the densities with each of the given values.

<u>For m = 7 [g] and V = 2.3 [cm³]</u>

Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]

<u>For m = 10 [g] and V = 7 [cm³]</u>

<u />Ro=10/7\\Ro=1.42[g/cm^{3} ]\\<u />

<u>For m = 15 [g] and V = 5 [cm³]</u>

<u />Ro=15/5\\Ro=3[g/cm^{3} ]\\<u />

<u>For m = 21 [g] and V = 8 [cm³]</u>

<u />Ro=21/8\\Ro=2.625[g/cm^{3} ]\\<u />

5 0
3 years ago
7. The S.l. unit for force is<br> A. kg<br> C. m/s<br> B. m/s2<br> D. N
netineya [11]
D.N(Newton) this is the S.I unit for force
5 0
3 years ago
Two objects of the same size are both perfect blackbodies. One has a temperature of 3000 K, so its frequency of maximum emission
bija089 [108]

Answer:

a) The colder body (3000k), b) hearter body c) 12000K body

Explanation:

This exercise should know the power emitted by the objects and the distribution of this emission in the energy spectrum, for this we will use Stefan's laws and that of Wien's displacement

Stefan's Law                     P = σ A e T⁴

Wien displacement law   λ T = 2,898 10⁻³ m K

Let's calculate the power emitted for each object.

As they are perfect black bodies e = 1, they also indicate that they have the same area

T = 3000K

       P₁ = σ A T₁⁴

T = 12000K

       P₂ = σ A T₂⁴

       P₂ / P₁ = T₂⁴ / T₁⁴

       P₂ / P₁ = (12000/3000)⁴

       P₂ / P₁ = 256

This indicates that the hottest body emission is 256 times the coldest body emission.

Let's calculate the maximum emission wavelength

Body 1

T = 3000K

       λ T = 2,898 10-3

       λ₁ = 2.89810-3 / T

       λ₁ = 2,898 10-3 / 3000

       λ₁ = 0.966 10-6 m

      λ₁ = 966 nm

T = 12000K

      λ₂ = 2,898 10-3 / 12000

      λ₂ = 0.2415 10-6 m

      λ₂ = 214 nm

a) The colder body (3000k) emits more light in the infrared, since the emission of the hot body is at a minimum (emission tail)

b) The two bodies have emission in this region, the body of 3000K in the part of rise of the emission and the body to 12000K in the descent of the emission even when this body emits 256 times more than the other, so this body should have the highest broadcast in this area

c) The emission of the hottest 12000K body is mainly in UV

d) The hottest body emits more energy in UV and visible

e) No body has greater emission in all zones

5 0
3 years ago
Salmon often jump waterfalls to reach their breeding grounds. Starting downstream, 3.04 m away from a waterfall 0.585 m in heigh
S_A_V [24]

Answer:

V₀ = 5.47 m/s

Explanation:

The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:

R = V₀² Sin 2θ/g

where,

R = Range of Projectile = 3.04 m

θ = Launch Angle = 41.7°

V₀ = Minimum Launch Speed = ?

g = 9.81 m/s²

Therefore,

3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)

V₀² = 3.04 m/(0.10126 s²/m)

V₀ = √30.02 m²/s²

<u>V₀ = 5.47 m/s</u>

6 0
3 years ago
Which characteristic of a sound is affected by the amount of energy used to create that sound? In what direction the sound will
olya-2409 [2.1K]

Answer:

The correct option is;

How loud or soft the sound is

Explanation:

The loudness of a sound wave is given by the amount of energy that the pressure wave carries and it is measured in decibels (dB) which is the relative intensity of the pressure wave of a sound to the standard pressure

A loud sound has a high amplitude and a soft sound has a low amplitude, such that as the amplitude of the sound is increased, due to increased energy input, the sound becomes louder, and as the amplitude of the sound is decreased due to reduced energy input, the sound becomes softer.

5 0
3 years ago
Other questions:
  • PLEASE I NEED HELP I AM REALLY STUCK!!!
    15·1 answer
  • At one particular moment, a 15.0 kg toboggan is moving over a horizontal surface of snow at 4.40 m/s. After 7.50 s have elapsed,
    11·1 answer
  • A 1kg of compound a with specific heat capacity of 1000J is heated increasing its temp by 1 degree. How much energy has been add
    13·1 answer
  • The Voltage difference of a circuit is 16V and the resistance is 120 ohms. What is the current in the circuit? Show me your work
    15·1 answer
  • When you are on a roller coaster, you are constantly transforming from Potential to Kinetic energy and back. Explain how these e
    6·1 answer
  • How does the frequency of gamma rays compare to the frequency of microwaves?
    8·1 answer
  • How fast must a 70 kg student be running to have a kinetic energy of 568 J?!
    6·1 answer
  • Which of the following best represents potential energy being converted to kinetic energy? A. A man jogs and stops to drink an e
    7·2 answers
  • Two masses m1 and m2 are traveling in the direction of each other. The speed of m1 is v1 and oriented along the positive x-direc
    10·1 answer
  • What charge does an object have if it has an excess of electrons?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!