Answer:
v = 3.7 m/s
Explanation:
As the swing starts from rest, if we choose the lowest point of the trajectory to be the zero reference level for gravitational potential energy, and if we neglect air resistance, we can apply energy conservation as follows:
m. g. h = 1/2 m v²
The only unknown (let alone the speed) in the equation , is the height from which the swing is released.
At this point, the ropes make a 30⁰ angle with the vertical, so we can obtain the vertical length at this point as L cos 30⁰, appying simply cos definition.
As the height we are looking for is the difference respect from the vertical length L, we can simply write as follows:
h = L - Lcos 30⁰ = 5m -5m. 0.866 = 4.3 m
Replacing in the energy conservation equation, and solving for v, we get:
v = √2.g.(L-Lcos30⁰) = √2.9.8 m/s². 4.3 m =3.7 m/s