Not sure but just coming to say good luck and take your time
Answer:
2.12/R mW
Explanation:
The electrical power, P generated by the rod is
P = B²L²v²/R where B = magnetic field = 0.575 T, L = length of metal rod = separation of metal rails = 20 cm = 0.2 m, v = velocity of metal rod = 40 cm/s = 0.4 m/s and R = resistance of rod = ?
So, the induced emf on the conductor is
E = BLv
= 0.575 T × 0.2 m × 0.4 m/s
= 0.046 V
= 46 mV
The electrical power, P generated by the rod is
P = B²L²v²/R
= B²L²v²/R
So, P = (0.575 T)² × (0.2 m)² × (0.4 m/s)²
= 0.002116/R W
= 2.12/R mW
Answer:
C) 2.44 × 106 N/C
Explanation:
The electric flux through a circular loop of wire is given by

where
E is the electric field
A is the cross-sectional area
is the angle between the direction of the electric field and the normal to A
The flux is maximum when
, so we are in this situation and therefore
, so we can write

Here we have:
is the flux
d = 0.626 m is the diameter of the coil, so the radius is
r = 0.313 m
and so the area is

And so, we can find the magnitude of the electric field:

The answer would be A, because the wind cannot complain, therefore it has been given a human quality.