1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
My name is Ann [436]
2 years ago
10

A student makes a ball-and-stick model of a propane molecule, as shown below. The black balls represent carbon atoms, and the wh

ite balls represent hydrogen atoms.

Chemistry
1 answer:
dexar [7]2 years ago
5 0

Answer:

Explanation:

No sure I tried

You might be interested in
Cell are the blank unit of all living organisms​
leonid [27]
Yes cells are the blank unit for all things that are living
4 0
2 years ago
In the preparation of a certain alkyl halide, 10 g of sodium bromide (NaBr), 10 mL distilled water (H20), and 9 mL 3-methyl-1-bu
Novosadov [1.4K]

Percentage yield shows the amount of reactants converted into products. The percentage yield of the reaction is 51.7%.

The equation of the reaction is sown in the image attached. The reaction is 1:1 as we can see.

Number of moles of NaBr = 10 g/103 g/mol = 0.097 moles

We can obtain the mass of 3-methyl-1-butanol from its density.

Mass = density × volume

Density of 3-methyl-1-butanol =  0.810 g/mL

Volume of  3-methyl-1-butanol = 9 mL

Mass of 3-methyl-1-butanol = 0.810 g/mL × 9 mL

Mass of 3-methyl-1-butanol = 7.29 g

Number of moles of 3-methyl-1-butanol =  mass/molar mass =  7.29 g/88 g/mol = 0.083 moles

Since the reaction is 1:1 then the limiting reagent is 3-methyl-1-butanol

Mass of product 1-bromo-3-methylbutane = number of moles × molar mass

Molar mass of 1-bromo-3-methylbutane = 151 g/mol

Mass of product 1-bromo-3-methylbutane = 0.083 moles × 151 g/mol

= 12.53 g

Recall that % yield = actual yield/theoretical yield × 100

Actual yield of product = 6.48 g

Theoretical yield = 12.53 g

% yield = 6.48 g/12.53 g × 100

% yield = 51.7%

Learn more: brainly.com/question/5325004

7 0
2 years ago
Suppose you have just added 100 ml of a solution containing 0.5 mol of acetic acid per liter to 400 ml of 0.5 m naoh. what is th
Tpy6a [65]

pH = 13.5

Explanation:

Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:

\text{HAc} + \text{OH}^{-} \to \text{Ac}^{-} + \text{H}_2\text{O}

The mixture would contain

  • 0.4 \times 0.5 - 0.1 \times 0.5 = 0.15 \; \text{mol} of \text{OH}^{-} and
  • 0.1 \times 0.5 = 0.05 \; \text{mol} of \text{Ac}^{-}

if \text{Ac}^{-} undergoes no hydrolysis; the solution is of volume 0.1 + 0.4 = 0.5 \; \text{L} after the mixing. The two species would thus be of concentration 0.30 \; \text{mol} \cdot \text{L}^{-1} and 0.10 \; \text{mol} \cdot \text{L}^{-1}, respectively.

Construct a RICE table for the hydrolysis of \text{Ac}^{-} under a basic aqueous environment (with a negligible hydronium concentration.)

\begin{array}{cccccccc} \text{R} & \text{Ac}^{-}(aq) &+ & \text{H}_2\text{O}(aq) & \leftrightharpoons & \text{HAc}(aq) & + & \text{OH}^{-} (aq)\\ \text{I} & 0.10 \; \text{M} & & & & & &0.30 \; \text{M}\\ \text{C} & -x \; \text{M}& & & & +x \; \text{M}& & +x \; \text{M} \\ \text{E} & (0.10 - x) \; \text{M} & & & & x \; \text{M} & & (0.30 +x) \; \text{M} \end{array}

The question supplied the <em>acid</em> dissociation constant pK_afor acetic acid \text{HAc}; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant pK_b for its conjugate base, \text{Ac}^{-}. The following relationship relates the two quantities:

pK_{b} (\text{Ac}^{-}) = pK_{w} - pK_{a}( \text{HAc})

... where the water self-ionization constant pK_w \approx 14 under standard conditions. Thus pK_{b} (\text{Ac}^{-}) = 14 - 4.7 = 9.3. By the definition of pK_b:

[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b =  10^{-pK_{b}}

x \cdot (0.3 + x) / (0.1 - x) = 10^{-9.3}

x = 1.67 \times 10^{-10} \; \text{M} \approx 0 \; \text{M}

[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}

pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5

6 0
3 years ago
What element am I?
Serga [27]

Answer:

H- hydrogen

Explanation: Hydrogen is in the first group meaning that it only has 1 valence electron and 1 energy level

4 0
2 years ago
Consider the reaction 2CuCl2 + 4K - 2Cul + 4KCI + 12. If 4 moles of CuCl2 react with 4 moles of KI, what is the limiting reactan
Free_Kalibri [48]
Haha i’m trying to do the same one i’ll make sure if i find out how too to get back to you!
8 0
3 years ago
Other questions:
  • Which monatomic ions would you expect radium (z = 88) and selenium (z = 34) to form?
    10·2 answers
  • What is the basic unit of all matter?What is the basic unit of all matter?
    13·2 answers
  • How many mg of a 31-mg sample of calciul 47 remains after 45 days
    9·2 answers
  • Kevin draws a lewis structure for the molecule of ozone, o3. later on that day, he draws another one for a friend to show what h
    7·2 answers
  • How did Dalton describe the relationship between atoms and elements? An element is made up of one kind of atom. Atoms are made u
    8·2 answers
  • Are all elements created equal? Provide evidence for why or why not.​
    8·1 answer
  • Predict what would happen if plants disappear?
    9·1 answer
  • What’s the total charge of two nitrogen ions
    13·1 answer
  • How do birth and death rates affect a population size?
    12·1 answer
  • A chemical reaction is shown below:
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!