Answer:
50m; 0m/s.
Explanation:
Given the following data;
Initial velocity = 20m/s
Acceleration, a = - 4m/s²
Time, t = 5secs
To find the displacement, we would use the second equation of motion;

Substituting into the equation, we have;



S = 50m
Next, to find the final velocity, we would use the third equation of motion;
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
<em>Substituting into the equation, we have;</em>
V = 0m/s
<em>Therefore, the displacement of the bus is 50m and its final velocity is 0m/s.</em>
The answer would be a=5 m/s^2
I hope this helps you, have a great day!
The correct answer is - c. escape.
The word ''escape'' means to get away from something. This word can be used for multiple different situations, and it can refer to both physical and psychological matters.
In a physical sense it can be used to escape from certain unpleasant, or dangerous situation. Example: I have to escape from this prison.
In a psychological sense it can be used to escape, move away, from a certain state of mind. Example: I have to find an escape from my depressive thoughts.
The process that powers stars is C)fusion
Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.