Answer: The entire water/ice solution is at the melting/freezing point, 32°F (0°C). Adding rock salt — or any substance that dissolves in water — disrupts this equilibrium.
Explanation: Hope this helps! Have a great day :)
Answer:
Explanation:When silver Ag metal is added to copper sulphate CuSO4 solution, no reaction takes place as silver is less reactive than that of copper and cannot displace copper from its solution. Hence, when a piece of silver metal is added to copper sulphate solution there will be no reaction.
The phrase which best describes nuclear fusion is: A. the process by which small nuclei combine into a larger nucleus.
A nuclear reaction can be defined as a type of chemical reaction in which the nucleus of an atom of a radioactive chemical element is transformed by either being joined (fusion) or split (fission) with the nucleus of another atom of a radioactive chemical element and accompanied by a release of energy.
Generally, there are two (2) main types of nuclear reaction and these include:
- <u>Nuclear fission:</u> it involves the collision of a heavy atomic nucleus with a neutron, thereby causing a split and release of energy.
- <u>Nuclear fusion:</u> it involves the joining of two smaller nuclei of atoms to form a single massive or heavier (larger) nucleus with the release of energy.
In conclusion, nuclear fusion is best described as the process by which small nuclei combine into a larger nucleus, accompanied by a release of energy.
Read more: brainly.com/question/24040465
No. When water first begins to cool down, it contracts. However, as it gets colder and eventually freezes, it begins to expand.
You can test this by freezing water in a water bottle: when you take it out of the freezer, the cap might have popped off or cracks may have formed in the sides of the bottle.
Answer: Water expands when frozen, not contracts.
Electron microscopes differ from light microscopes in that they produce an image of a specimen by using a beam of electrons rather than a beam of light. Electrons have much a shorter wavelength than visible light, and this allows electron microscopes to produce higher-resolution images than standard light microscopes