1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mr_godi [17]
2 years ago
11

Owen throws a baseball straight upward. We can ignore air resistance.

Physics
1 answer:
dusya [7]2 years ago
7 0

Answer:

The acceleration of the ball is constant and equal to -9.81 m/s² (acting downwards)

The velocity of the ball reduces at a constant rate with time on its way up

Explanation:

The motion of the ball upwards is described by the following equation;

v = u - g × t

v² = u² - 2 × g × s

Where;

v = The final velocity of the ball

u = The initial velocity of the ball

g = The acceleration due to gravity = Constant

s = The height of the bass after a given time, t

t = The time in which the ball is rising

Therefore, the acceleration of the ball = The acceleration due to gravity  (Constant) = -9.81 m/s²↓

From v = u - g × t = u - 9.81 × t , the velocity of the ball reduces at a constant rate with time on its way up.

You might be interested in
Students perform an experiment in which they drop two eggs with equal mass from a balcony. In the first trial, the egg hits the
shepuryov [24]

<u> Answer </u>

The impulse on the second trial is smaller is smaller than in the first trial.

<u>Explanation </u>

Impose of a body is that change in momentum during a time interval. If the change of momentum takes longer then, the impulse of a force is less. I a moving object hits a hard surface the rate of change of momentum is very high. e.i in the first trial, the egg breaks because it hits the hard surface(ground).

In the second trial, the foam cushion absorbs the shock and prolongs the time of impact with the egg hence decreasing the impulse.


8 0
3 years ago
Read 2 more answers
The driver of a car slams on the brakes, causing the car to slow down at a rate of
sdas [7]

Answer:

A. The time taken for the car to stop is 3.14 secs

B. The initial velocity is 81.64 ft/s

Explanation:

Data obtained from the question include:

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Final velocity (V) = 0

Time (t) =?

Initial velocity (U) =?

A. Determination of the time taken for the car to stop.

Let us obtain an express for time (t)

Acceleration (a) = Velocity (V)/time(t)

a = V/t

Velocity (V) = distance (s) /time (t)

V = s/t

a = s/t^2

Cross multiply

a x t^2 = s

Divide both side by a

t^2 = s/a

Take the square root of both side

t = √(s/a)

Now we can obtain the time as follow

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Time (t) =..?

t = √(s/a)

t = √(256/26)

t = 3.14 secs

Therefore, the time taken for the car to stop is 3.14 secs

B. Determination of the initial speed of the car.

V = U + at

Final velocity (V) = 0

Deceleration (a) = –26ft/s2

Time (t) = 3.14 sec

Initial velocity (U) =.?

0 = U – 26x3.14

0 = U – 81.64

Collect like terms

U = 81.64 ft/s

Therefore, the initial velocity is 81.64 ft/s

7 0
3 years ago
PLZ EXPLAIN IM SO CONFUSED AND THIS IS DUE TONIGHT. I WILL GIVE 50 POINTS!
bezimeni [28]

When you first pull back on the pendulum, and when you pull it back really high the Potential Energy is high and the Kinetic Energy is low, But when up let go, and it gets right around the middle, that's when the Potential energy transfers to Kinetic, at that point the kinetic Energy is high and the potential Energy is low. But when it comes back up at the end. The same thing will happen, the Potential Energy is high, and the Kinetic Energy is low. Through all of that the Mechanical Energy stays the same. 

I hope this helps. :)

Brainliest?

8 0
3 years ago
Of all the planets in our solar system, Jupiter has the greatest gravitational strength. If a 1.5 kg pair of running shoes would
Andre45 [30]

Answer:

gₓ = 23.1 m/s²

Explanation:

The weight of an object is on the surface of earth is given by the following formula:

W = mg

where,

W = Weight of the object on surface of earth

m = mass of object

g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth

Similarly, the weight of the object on Jupiter will be given as:

W_{x} = mg_{x}

where,

Wₓ = Weight of the object on surface of Jupiter = 34.665 N

m = mass of object = 1.5 kg

gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?

Therefore,

34.65 N = (1.5 kg)g_{x}

g_{x} = \frac{34.65 N}{1.5 kg}

<u>gₓ = 23.1 m/s²</u>

7 0
3 years ago
A 7.7 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest. The composite system moves with a
klemol [59]

Answer:

15.4 kg.

Explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u' = V(m+m').................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.

Given: m = 7.7 kg, u' = 0 m/s (at rest)

Let: u = x m/s, and V = 1/3x m/s

Substitute into equation 1

7.7(x)+m'(0) = 1/3x(7.7+m')

7.7x = 1/3x(7.7+m')

7.7 = 1/3(7.7+m')

23.1 = 7.7+m'

m' = 23.1-7.7

m' = 15.4 kg.

Hence the mass of the second sphere = 15.4 kg

7 0
3 years ago
Read 2 more answers
Other questions:
  • A 70 kg man is walking at a speed of 2 m/s. What is his Kinetic Energy?
    12·2 answers
  • While doing a lab, a student found the density of a piece of pure aluminum to be 2.85 g/cm. The accepted value for the density o
    10·1 answer
  • At what speed does a falling hailstone travel? Does the speed depend on the distance that the hailstone falls?
    15·1 answer
  • List inner planets and outer planets
    9·2 answers
  • What is the mass of a cannonball if a force of 2,500 N gives the cannonball an acceleration of 200m/s2?
    10·2 answers
  • During a tug-of-war, team A pulls on team B by applying a force of 1390 N to the rope between them. How much work does team A do
    6·1 answer
  • Energy flow in an ecosystem is best represented by
    8·1 answer
  • What magnification will be produced by a lens of power –4.00 D (such as might be used to correct myopia) if an object is held 43
    7·1 answer
  • !! Offering 50 points !!
    11·2 answers
  • The wave function for a traveling wave on a taut string is (in SI units)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!