The specific heat of a material is 0.137 J/g°C.
<u>Explanation:</u>
The specific heat formula relates the heat energy required to perform a certain reaction with the mass of the reactants, specific heat and the change in temperature during the reaction.
Q = mcΔT
Here m is the mass, Q is the heat energy required, ΔT is the change in temperature and c is the specific heat.
So, if we have to determine the specific heat of the object, then we have to determine the ratio of heat required to mass of the object with change in time, as shown below.

As mass of the object m is given as 35 g and the energy is said to be absorbed so Q = 96 J.
The temperature values given should be changed from kelvin to celsius first. So, initial temperature 293 K will become 293-273.15 = 19.85°C.
Similarly, the final temperature will be 313 - 273.15 = 39.85°C.
Then, ΔT = 39.85-19.85 = 20 °C
Then,

So, the specific heat of a material is 0.137 J/g°C.
Answer:
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
Explanation:
P = 3.00 atm + 2.80 atm + 0.25 atm + 0.15 atm
P = 6.8 atm
3.5 atm = x (6.8 atm)
x = 0.51