We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)= 
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.
Answer: Morse code and Braille use representations to form messages.
Explanation:
- they both have military roots.
-also a similarity is that braille letters are made of 1 to 6 dots, and Morse code is also made of 1 to 6 dots and dashes
-
Answer: Activation energy
Explanation:
In a chemical reaction, the reactants contains particles which must collide in order for a reaction to occur. The rate of reaction depends on the frequency of effective collision between the reacting particles. Effective collision are those that result in reactions, which when they occur the colliding particles become activated with increased kinetic energy.
This energy must exceed a particular energy barrier for a particular reaction if the reaction must take place. This energy barrier that must be overcome before a reaction takes place is known as the ACTIVATION ENERGY.
To explain further, when two particles or molecules A and B come in contact with each other, for a reaction to take place, they must collide with a sufficient force to break the bond that exists between them. The minimum combined kinetic energy these reactant particles must possess in order for their collision to result in a reaction is called the activation energy.
Answer: Option (A) is the correct answer.
Explanation:
When there occurs no change in the chemical composition of a substance then it is known as physical property.
For example, mass, volume, density are all physical properties.
Since, the mass of an electron is negligible and an electron holds a negative charge.
Therefore, negatively charged particle with very little mass accurately describes the physical properties of electrons in atoms.