Answer:
68cm
Explanation:
You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

m: mass of the bullet
M: mass of the pendulum
v1: velocity of the bullet = 410m/s
v2: velocity of the pendulum =0m/s
v: velocity of both bullet ad pendulum joint
By replacing you can find v:

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

g: 9.8/s^2
h: height
By doing h the subject of the equation and replacing you obtain:

hence, the heigth is 68cm
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
Answer:Theoretical Discussion
The diffraction of classical waves refers to the phenomenon wherein the waves encounter an obstacle that fragments the wave into components that interfere with one another. Interference simply means that the wave fronts add together to make a new wave which can be significantly different than the original wave. For example, a pair of sine waves having the same amplitude, but being 180◦ out of phase will sum to zero, since everywhere one is positive, the other is negative by an equal amount.