1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
5

How much current must flow through a wire to make a magnetic field as strong as Earth's field (5.00 x 10^-5 T) 1.00 m away from

the wire?
Physics
1 answer:
torisob [31]3 years ago
7 0

Answer:

250 A

Explanation:

B = 5 x 10^-5 T, r = 1 m

Let current be i.

the magnetic field due to a straight current carrying conductor is given by

B = μ0 / 4π x 2i / r

5 x 10^-5 = 10^-7 x 2 x i / 1

i = 250 A

You might be interested in
n 38 g rifle bullet traveling at 410 m/s buries itself in a 4.2 kg pendulum hanging on a 2.8 m long string, which makes the pend
Kitty [74]

Answer:

68cm

Explanation:

You can solve this problem by using the momentum conservation and energy conservation. By using the conservation of the momentum you get

p_f=p_i\\mv_1+Mv_2=(m+M)v

m: mass of the bullet

M: mass of the pendulum

v1: velocity of the bullet = 410m/s

v2: velocity of the pendulum =0m/s

v: velocity of both bullet ad pendulum joint

By replacing you can find v:

(0.038kg)(410m/s)+0=(0.038kg+4.2kg)v\\\\v=3.67\frac{m}{s}

this value of v is used as the velocity of the total kinetic energy of the block of pendulum and bullet. This energy equals the potential energy for the maximum height reached by the block:

E_{fp}=E_{ki}\\\\(m+M)gh=\frac{1}{2}mv^2

g: 9.8/s^2

h: height

By doing h the subject of the equation and replacing you obtain:

(0.038kg+4.2kg)(9.8m/s^2)h=\frac{1}{2}(0.038kg+4.2kg)(3.67m/s)^2\\\\h=0.68m

hence, the heigth is 68cm

4 0
3 years ago
The universal law of gravitation states that the force of attraction between two objects depends on which quantities?
Ronch [10]

Answer:

D. the masses of the objects and the distance between them

Explanation:

Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.

And you can get it using the following equation:

f = \frac{Gm_{1}m_{2} }{d^{2} }

Where :

G is the universal gravitational constant : G = 6.6726 x 10-11N-m2/kg2

m represent the mass of each of the two objects

d is the distance between the centers of the objects.

4 0
3 years ago
The first step in a star formation is ______?
Mariana [72]
First look at the star
8 0
2 years ago
Read 2 more answers
On a straight road, a car speeds up at a constant rate from rest to 20 m/s over a 5 second interval and a truck slows at a const
IceJOKER [234]

Answer:

a)

Explanation:

  • Since the car speeds up at a constant rate, we can use the kinematic equation for distance (assuming that the initial position is x=0, and choosing t₀ =0), as follows:

        x_{fc} = v_{o}*t + \frac{1}{2}*a*t^{2}   (1)

  • Since the car starts from rest, v₀ =0.
  • We know the value of t = 5 sec., but we need to find the value of a.
  • Applying the definition of acceleration, as the rate of change of velocity with respect to time, and remembering that v₀ = 0 and t₀ =0, we can solve for a, as follows:

       a_{c} =\frac{v_{fc}}{t} = \frac{20m/s}{5s} = 4 m/s2  (2)

  • Replacing a and t in (1):

       x_{fc} = v_{o}*t + \frac{1}{2}*a*t^{2}  = \frac{1}{2}*a*t^{2} = \frac{1}{2}* 4 m/s2*(5s)^{2} = 50.0 m.  (3)

  • Now, if the truck slows down at a constant rate also, we can use (1) again, noting that v₀ is not equal to zero anymore.
  • Since we have the values of vf (it's zero because the truck stops), v₀, and t, we can find the new value of a, as follows:

       a_{t} =\frac{-v_{to}}{t} = \frac{-20m/s}{10s} = -2 m/s2  (4)

  • Replacing v₀, at and t in (1), we have:

       x_{ft} = 20m/s*10.0s + \frac{1}{2}*(-2 m/s2)*(10.0s)^{2} = 200m -100m = 100.0m   (5)

  • Therefore, as the truck travels twice as far as the car, the right answer is a).
7 0
3 years ago
Edge 2020 waves and diffraction lab report d a t a ​
Sever21 [200]

Answer:Theoretical Discussion

The diffraction of classical waves refers to the phenomenon wherein the waves encounter an obstacle that fragments the wave into components that interfere with one another. Interference simply means that the wave fronts add together to make a new wave which can be significantly different than the original wave. For example, a pair of sine waves having the same amplitude, but being 180◦ out of phase will sum to zero, since everywhere one is positive, the other is negative by an equal amount.

5 0
2 years ago
Read 2 more answers
Other questions:
  • A horse draws a sled horizontally across a snow-covered field. The coefficient of friction between the sled and the snow is 0.13
    9·1 answer
  • Which of the following is an electric potential?
    12·2 answers
  • A 1430 kg car speeds up from 7.50 m/s to 11.0 m/s in 9.30 s. Ignoring friction, how much power did that require?(unit=W)PLEASE H
    5·1 answer
  • what would you expect to happen to the acceleration if all friction were removed from the ramp, making the net force even higher
    8·2 answers
  • What is role of skin in balancing body temperature during strenous excervise
    10·1 answer
  • @kikatkraken This is the energy of an object while it is in motion.
    9·1 answer
  • What is the basic form of matter which cannot be broken down any further?
    8·2 answers
  • 4. How much time does it take for a student running at a speed of 5 m/s to cover a distance of 2,000 m?
    6·1 answer
  • How are chromosomes, genes and inheritance related
    10·1 answer
  • Question 4
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!