Answer:
Autobus porusza się ze stałą prędkością 54 km/h Oblicz w jakim czasie przebędzie drogę 450 m
Answer:
t = 23.255 s, x = 2298.98 m, v_y = - 227.90 m / s
Explanation:
After reading your extensive writing, we are going to solve the approach.
The initial speed of the plane is 250 miles / h and it is at an altitude of 2650 m; In general, planes fly horizontally for launch, therefore this is the initial horizontal speed.
As there is a mixture of units in different systems we are going to reduce everything to the SI system.
v₀ₓ = 250 miles h (1609.34 m / 1 mile) (1 h / 3600 s) = 111.76 m / s
y₀ = 2650 m
Let's set a reference system with the x-axis parallel to the ground, the y-axis is vertical. As time is a scalar it is the same for vertical and horizontal movement
Y axis
y = y₀ + v₀ t - ½ g t²
the initial vertical velocity when the cargo is dropped is zero and when it reaches the floor the height is zero
0 = y₀ + 0 - ½ g t²
t =
t = √(2 2650/ 9.8)
t = 23.255 s
Therefore, for the cargo to reach the desired point, it must be launched from a distance of
x = v₀ₓ t
x = 111.76 23.255
x = 2298.98 m
at the point and arrival the speed is
vₓ = v₀ₓ = 111.76
vertical speed is
v_y = v_{oy} - gt
v_y = 0 - gt
v_y = - 9.8 23.25 555
v_y = - 227.90 m / s
the negative sign indicates that the speed is down
in the attachment we have a diagram of the movement
|acceleration| = (change in speed) / (time for the change)
Change in the car's speed = (27 - 0) = 27 m/s
Time for the change = 10 sec
|acceleration| = (27 m/s) / (10 s) = 2.7 m/s² .
That's the magnitude of the car's acceleration.
We don't know anything about its direction.
The wall exerts a force of equal magnitude but in the opposite direction. So the force by the wall is 10 N to the right.