Answer:
C.
will precipitate out first
the percentage of
remaining = 12.86%
Explanation:
Given that:
A solution contains:
![[Ca^{2+}] = 0.0440 \ M](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%200.0440%20%5C%20M)
![[Ag^+] = 0.0940 \ M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%20%3D%200.0940%20%5C%20M)
From the list of options , Let find the dissociation of 

where;
Solubility product constant Ksp of
is 
Thus;
![Ksp = [Ag^+]^3[PO_4^{3-}]](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BAg%5E%2B%5D%5E3%5BPO_4%5E%7B3-%7D%5D)
replacing the known values in order to determine the unknown ; we have :
![8.89 \times 10 ^{-17} = (0.0940)^3[PO_4^{3-}]](https://tex.z-dn.net/?f=8.89%20%5Ctimes%2010%20%5E%7B-17%7D%20%20%3D%20%280.0940%29%5E3%5BPO_4%5E%7B3-%7D%5D)
![\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3} = [PO_4^{3-}]](https://tex.z-dn.net/?f=%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D%20%20%3D%20%5BPO_4%5E%7B3-%7D%5D)
![[PO_4^{3-}] =\dfrac{8.89 \times 10 ^{-17}}{(0.0940)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%5Cdfrac%7B8.89%20%5Ctimes%2010%20%5E%7B-17%7D%7D%7B%280.0940%29%5E3%7D)
![[PO_4^{3-}] =1.07 \times 10^{-13}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D1.07%20%5Ctimes%2010%5E%7B-13%7D)
The dissociation of 
The solubility product constant of
is 
The dissociation of
is :

Thus;
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = (0.0440)^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%3D%20%280.0440%29%5E3%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![\dfrac{2.07 \times 10^{-33} }{(0.0440)^3}= [PO_4^{3-}]^2](https://tex.z-dn.net/?f=%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D%3D%20%20%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![[PO_4^{3-}]^2 = \dfrac{2.07 \times 10^{-33} }{(0.0440)^3}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%280.0440%29%5E3%7D)
![[PO_4^{3-}]^2 = 2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%5E2%20%3D%202.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] = \sqrt{2.43 \times 10^{-29}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D%20%5Csqrt%7B2.43%20%5Ctimes%2010%5E%7B-29%7D)
![[PO_4^{3-}] =4.93 \times 10^{-15}](https://tex.z-dn.net/?f=%5BPO_4%5E%7B3-%7D%5D%20%3D4.93%20%5Ctimes%2010%5E%7B-15%7D)
Thus; the phosphate anion needed for precipitation is smaller i.e
in
than in

Therefore:
will precipitate out first
To determine the concentration of
when the second cation starts to precipitate ; we have :
![Ksp = [Ca^{2+}]^3 [PO_4^{3-}]^2](https://tex.z-dn.net/?f=Ksp%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%5BPO_4%5E%7B3-%7D%5D%5E2)
![2.07 \times 10^{-33} = [Ca^{2+}]^3 (1.07 \times 10^{-13})^2](https://tex.z-dn.net/?f=2.07%20%5Ctimes%2010%5E%7B-33%7D%20%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5E3%20%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2)
![[Ca^{2+}]^3 = \dfrac{2.07 \times 10^{-33} }{(1.07 \times 10^{-13})^2}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D%20%20%5Cdfrac%7B2.07%20%5Ctimes%2010%5E%7B-33%7D%20%7D%7B%281.07%20%5Ctimes%2010%5E%7B-13%7D%29%5E2%7D)
![[Ca^{2+}]^3 =1.808 \times 10^{-7}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%5E3%20%3D1.808%20%5Ctimes%2010%5E%7B-7%7D)
![[Ca^{2+}] =\sqrt[3]{1.808 \times 10^{-7}}](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D%5Csqrt%5B3%5D%7B1.808%20%5Ctimes%2010%5E%7B-7%7D%7D)
![[Ca^{2+}] =0.00566](https://tex.z-dn.net/?f=%5BCa%5E%7B2%2B%7D%5D%20%3D0.00566)
This implies that when the second cation starts to precipitate ; the concentration of
in the solution is 0.00566
Therefore;
the percentage of
remaining = concentration remaining/initial concentration × 100%
the percentage of
remaining = 0.00566/0.0440 × 100%
the percentage of
remaining = 0.1286 × 100%
the percentage of
remaining = 12.86%
A closed system is completely closed to the outside environment. Every interaction is transmitted inside that closed system.
Answer:
0.733 mol.
Explanation:
- From the balanced equation:
<em>2Fe₂O₃ + C → Fe + 3CO₂,</em>
It is clear that 1.0 moles of Fe₂O₃ react with 1.0 mole of C to produce 1.0 mole of Fe and 3.0 moles of CO₂.
- Since Fe₂O₃ is in excess, C will be the limiting reactant.
<u><em>Using cross multiplication:</em></u>
1.0 mole of C produces → 3.0 moles of CO₂, from the stichiometry.
??? mole of C produces → 2.2 moles of CO₂.
∴ The no. of moles of C needed to produce 2.2 moles of CO₂ = (1.0 mole of C) (2.2 mole of CO₂) / (3.0 mole of CO₂) = 0.733 mol.
<span>I bet this is the notation used in nuclear reactions. The superscript represents the mass number while the subscript represents the atomic number of the element X. So, we find the element with an atomic number of 12. That would be Magnesium or Mg.</span>
Answer:
It is fairly obvious that zinc metal reacts with aqueous hydrochloric acid! The bubbles are hydrogen gas. ... In fact, electrons are being transferred from the zinc atoms to the hydrogen atoms (which ultimately make a molecule of diatomic hydrogen), changing the charges on both elements.
Explanation: