Answer:
9.877 m/s^2
Explanation:
The acceleration can be computed from ...
d = (1/2)at^2
(1600 m) = (1/2)a(18 s)^2
a = (1600/162) m/s^2 ≈ 9.877 m/s^2
Answer:
her displacement <em>s=337.5m</em>
Explanation:
check out the above attachment ☝️
Answer:
4.44s
Explanation:
A 34-kg child on an 18-kg swing set swings back and forth through small angles. If the length of the very light supporting cables for the swing is 4.9 m, how long does it take for each complete back-and-forth swing? Assume that the child and swing set are very small compared to the length of the cables
since the mass of the child and that of the swing is negligible, the masses wont be involved in the calculation
T=2π√L/g
g=acceleration due to gravity which is 9.81m/s2
the length of the supporting cable is 4.9m
T the period
period is the time required to make a complete oscillation
T=2*π√4.9/9.81
T=2*π*0.706
T=4.44s
4.44s
Answer:

Explanation:
We know that when we don't have air friction on a free fall the mechanical energy (I will symbololize it with ME) is equal everywhere. So we have:

where me(1) is mechanical energy while on h=10m
and me(2) is mechanical energy while on the ground
Ek(1) + DynamicE(1) = Ek(2) + DynamicE(2)
Ek(1) is equal to zero since an object that has reached its max height has a speed equal to zero.
DynamicE(2) is equal to zero since it's touching the ground
Using that info we have

we divide both sides of the equation with mass to make the math easier.
