Answer:
ΔU = - 310.6 J (negative sign indicates decrease in internal energy)
W = 810.6 J
Explanation:
a.
Using first law of thermodynamics:
Q = ΔU + W
where,
Q = Heat Absorbed = 500 J
ΔU = Change in Internal Energy of Gas = ?
W = Work Done = PΔV =
P = Pressure = 2 atm = 202650 Pa
ΔV = Change in Volume = 10 L - 6 L = 4 L = 0.004 m³
Therefore,
Q = ΔU + PΔV
500 J = ΔU + (202650 Pa)(0.004 m³)
ΔU = 500 J - 810.6 J
<u>ΔU = - 310.6 J (negative sign indicates decrease in internal energy)</u>
<u></u>
b.
The work done can be simply calculated as:
W = PΔV
W = (202650 Pa)(0.004 m³)
<u>W = 810.6 J</u>
I think the distance that should be used is the distance that one expects to be from the game you are hunting. Before taking a shotgun for a gobbler or even for ducks or other animals, you need to see how your gun performs by patterning it at various ranges with the load you want to use.
Answer:
h'=0.25m/s
Explanation:
In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).
So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of
. As you may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.
If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

When solving for r, we get:

so we can substitute this into our volume of a cone formula:

which simplifies to:


So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

Which simplifies to:

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)
So we get:

Now we can substitute the provided values into our equation. So we get:

so:

Motion Energy
I am writing this so it can be more than 20 letters
I hope the wire is not wound too tightly around the bar magnet.
The device will generate electrical energy when the bar magnet
is moving in or out of the coil of wire.