Answer:
OPTION D (The waves will sometimes get very high and very low) is the answer.
Explanation:
Wavelength = velocity ÷ frequency
As the frequency which measures the number of waves per unit of time is inversely proportional to the wavelength, point X which lies between two sources, and one source is shorter than another, the wave heights at point x will vary as the distances from point X vary too. This means that waves at point X depending on the wave type and source will get very high at times and very low.
Answer:
A. Repeat the experiment to be sure the results are valid.
The problem of the "sound barrier" has to do with moving through
air, and the things the air does when you try to push it out of the
way faster than the speed of sound. Moving through air faster
than sound was an engineering and technological problem, not
a scientific one.
Concerning light, that's about 874 thousand times faster.
See the problem ?
The work done by the shopping basket is 147 J.
<h3>When is work said to be done?</h3>
Work is said to be done whenever a force moves an object through a certain distance.
The amount of work done on the shopping basket can be calculated using the formula below.
Formula:
Where:
- W = Amount of work done by the basket
- m = mass of the shopping basket
- h = height of the shopping basket
- g = acceleration due to gravity.
Form the question,
Given:
- m = 10 kg
- h = 1.5 m
- g = 9.8 m/s²
Substitute these values into equation 2
- W = 10(1.5)(9.8)
- W = 147 J.
Hence, The work done by the shopping basket is 147 J.
Learn more about work done here: brainly.com/question/18762601
Answer:
The momentum of the photon is 1.707 x 10⁻²² kg.m/s
Explanation:
Given;
kinetic of electron, K.E = 100 keV = 100,000 eV = 100,000 x 1.6 x 10⁻¹⁹ J = 1.6 x 10⁻¹⁴ J
Kinetic energy is given as;
K.E = ¹/₂mv²
where;
v is speed of the electron

Therefore, the momentum of the photon is 1.707 x 10⁻²² kg.m/s