1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
6

Two parallel plates that are initially uncharged are separated by 1.7 mm, have only air between them, and each have surface area

s of 16 cm 2. How much charge must be transferred from one plate to the other if 1.9 J of energy are to be stored in the plates? (ε 0 = 8.85 × 10 -12 C 2/N ∙ m 2)
Physics
1 answer:
yaroslaw [1]3 years ago
7 0

Answer:

5.63\cdot 10^{-6} C

Explanation:

The capacitor of a parallel-plate capacitor is given by:

C=\epsilon_0 \frac{A}{d}

where

A is the area of each plate

d is the separation between the plates

\epsilon_0 is the vacuum permittivity

The energy stored in a capacitor instead is given by

U=\frac{1}{2}\frac{Q^2}{C}

where

Q is the charge stored in each plate

Substituting the expression we found for C inside the last formula,

U=\frac{1}{2}\frac{Q^2 d}{\epsilon_0 A}

And re-arranging it

Q=\sqrt{\frac{2U\epsilon_0 A}{d}}

Now if we substitute

d=1.7 mm=0.0017 m\\A=16 cm^2 = 16\cdot 10^{-4} m^2\\U = 1.9 J

We find the charge stored on the capacitor:

Q=\sqrt{\frac{2(1.9)(8.85\cdot 10^{-12})(16\cdot 10^{-4})}{0.0017}}=5.63\cdot 10^{-6} C

You might be interested in
The electric field between two parallel plates is uniform, with magnitude 628 N/C. A proton is held stationary at the positive p
aliina [53]

Answer:

Answer is explained in the explanation section below.

Explanation:

Solution:

Data Given:

Electric Field between two parallel plates = 628 N/C

Separation = 4.22 cm

a) In this part, we are asked to calculate the distance from positive plate at which the electron and proton pass each other.

Solution:

First of all:

Force on proton due to the Electric field between the plates is:

F_{p} = q_{p}E

and, we know that, F = ma

So,

m_{p}a = q_{p}E

a = \frac{q_{p}.E }{m_{p} }      Equation 1

So,

The distance covered by the electron is:

S = ut + 1/2at^{2}

Here, u = 0.

S = 1/2at^{2}

Put equation 1 into the above equation:

S = 1/2 x (\frac{q_{p}.E }{m_{p} }  )t^{2}      Equation 2

So,  

Similarly, the distance covered by electron will be:

(D-S) = 1/2 x (\frac{q_{e}.E }{m_{e} }  )t^{2}    Equation 3

We know that the charge of electron is equal to the charge of proton so,

q_{p} = q_{e} = q

By dividing the equation 2 by equation 3, we get:

\frac{S}{D-S} = \frac{m_{e} }{m_{p} }

Solve the above equation for S,

Sm_{p} = m_{e}D - m_{e}S

So,

S = \frac{m_{e}.D }{(m_{e} + m_{p})  }

Plugging in the values,

As we know the mass of electron is 9.1 x 10^{-31} and the mass of proton is 1.67 x 10^{-27}

S = \frac{9.1 . 10^{-31} . 4.22 }{(9.1 . 10^{-31} + 1.67 . 10^{-27}  }

S = 0.002298 cm (Distance from the positive plate at which the two pass each other)

b) In this part, we to calculate distance for Sodium ion and chloride ion as above.

So,

we already have the equation, we need to put the values in it.

So,

S = \frac{m_{Cl}.D }{(m_{Cl} + m_{Na})  }

As we know the mass of chlorine is 35.5 and of sodium is 23

S = \frac{35.5 . 4.22}{(35.5 + 23)}

S = 2.56 cm

7 0
3 years ago
Which equation best expresses the first law of thermodynamics, assuming Q is heat, U is internal energy, and W is work?
devlian [24]

The first law of thermodynamics is expresses by

D. ΔU=Q-W

which means change in internal energy of system = Heat added to system minus work done by the system

All are expressed in Joules.

This law is based on principle of conservation of energy.

5 0
3 years ago
Read 2 more answers
Air enters a turbine operating at steady state with a pressure of 75 Ibf/in.^2, a temperature of 800º R and velocity of 400 ft/s
Arturiano [62]

Answer:

(a) W/m = 49.334 Btu/lb

(b) \frac{E_{d} }{m} = 22.12 Btu/lb

Explanation:

For the given problem, it can be assumed that the system is operating at steady state and the effects of potential energy can be neglected.

(a) Using the thermodynamic table for air.

At the temperature (T_{1})of 800 ºR and pressure (P_{1}) of 75 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{1}) = 191.81 BTu/lb

Specific entropy (s_{1}) = 0.6956 Btu/(lb.ºR)

At the temperature (T_{2})of 600 ºR and pressure (P_{2}) of 15 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{2}) = 143.47 BTu/lb

Specific entropy (s_{2}) = 0.6261 Btu/(lb.ºR)

The work done can be calculated using energy rate equation:

\frac{W}{m} = \frac{Q}{m} + (h_{1} - h_{2}) + \frac{V_{1}^{2} - V_{2}^{2}}{2}

Q/m = heat transfer = -2 Btu/lb

V_{1} = 400 ft/s

V_{2} = 100 ft/s

\frac{W}{m} = -2 + (191.81 - 143.47) + \frac{400^{2} - 100^{2}}{2}*[tex]\frac{1}{2*32.2*778}[/tex] = -2 + 48.34 + 29.938 = 49.334 Btu/lb

(b) To calculate the exergy destruction, we will use the equation for exergy rate:

\frac{E_{d} }{m} = [1-\frac{T_{o} }{T_{b} }](\frac{Q}{m}) - \frac{W}{m} + [(h_{1} - h_{2}) -T_{o}(s_{1} - s_{2}) + \frac{V^{2} _{1} - V_{2} ^{2}}{2}]

The equation above is further simplified to:

\frac{Ed}{m} = T_{o}[(s_{2} -s_{1}) - Rln\frac{P_{2} }{P_{1} } - \frac{Q/m}{T_{b} }]

Using a reference temperature (To) = 500 °R

Average surface temperature (Tb = 620°R

\frac{Ed}{m} = 500*[(0.6261 -0.6956) - (1.986/28.97)ln\frac{15 }{75 } - \frac{-2}{620}}]

\frac{E_{d} }{m} = 500*[-0.0695 +0.068688*1.609 +0.003225] = 22.12 Btu/lb

5 0
4 years ago
Each square of the periodic table shows information about one element. The square usually shows the element's _______.
enot [183]

Answer:C. atomic number

Explanation:

4 0
3 years ago
Read 2 more answers
A rocket passing the earth with high speed will look shorter for the stationary observer measuring the size on earth than travel
neonofarm [45]

Answer:

True

Explanation:

This can be explained by the special theory of relativity for length contraction.

Length contraction is observed in the direction of motion of an object when an object moves with speed closer to the speed of light.

The length of the rocket in this case, appears shorter to the observer on earth in the stationary reference frame which is improper frame whereas the traveler in the rocket is in the same inertial frame which is proper for the rocket's size measurement.

5 0
3 years ago
Other questions:
  • Two convex thin lenses with focal lengths 10.0 cm and 20.0 cm are aligned on a common axis, running left to right, the 10-cm len
    11·1 answer
  • tickets at a museum cost 17 dollars each for a field trip, the museum offers a 4 doller discount on each ticket. How much will t
    12·1 answer
  • What is net force
    10·1 answer
  • Two small masses that are 10.0 cm apart attract each other with a force of 10.0 N. When they are 5.0 cm apart, these masses will
    11·1 answer
  • You are in a train traveling on a horizontal track and notice that a piece of luggage starts to slide directly toward the front
    7·1 answer
  • Electrolytes are considered ________ when placed in a solution and allow for adequate conduction of ________ charges.
    5·1 answer
  • A roller coaster car rapidly picks up speed as it rolls down a slope as it starts down the slope its speed is 4m/s but 3 seconds
    11·1 answer
  • Pure water has a pH of 7. Pure water _______. A. is a neutral substance B. could be either an acid or a base C. is a base D. is
    7·2 answers
  • A free body diagram can be used to help work out the net force acting on an object. True or, false?
    15·1 answer
  • How many minutes are each half in soccer ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!