It’s the doubles I think not sure let me know if it’s true
Answer:
The final mass of sample is 1.3 g.
Explanation:
Given data:
Half life of H-3 = 12.32 years
Amount left for 15.0 years = 3.02 g
Final amount = ?
Solution:
First all we will calculate the decay constant.
t₁/₂ = ln² /k
t₁/₂ =12.32 years
12.32 y = ln² /k
k = ln²/12.32 y
k = 0.05626 y⁻¹
Now we will find the original amount:
ln (A°/A) = Kt
ln (3.02 g/ A) = 0.05626 y⁻¹ × 15.0 y
ln (3.02 g/ A) = 0.8439
3.02 g/ A = e⁰°⁸⁴³⁹
3.02 g/ A = 2.33
A = 3.02 g/ 2.33
A = 1.3 g
The final mass of sample is 1.3 g.
Answer:
a. True
Explanation:
There is strong inhibition of Carbon Anhydrase by Aceta-zolamide Carbonic Anhydrase. The drug acetazolamide is used as diuretic which increase the urine production in human body. It lowers pressure in eye in glaucoma.
Answer:
In the 1H NMR spectrum of ethanol three different signals are observed, this is due to the existence of 3 types of hydrogens with different chemical environment. Hydrogens A (3.57 ppm) are more screened than C (1.10 ppm) due to the presence of oxygen (electonegative atom that removes electron density). The chemical environment of hydrogen B (4.78 ppm), attached directly to oxygen, is also different by resonating at a frequency different from the previous ones.

The hydroxylic hydrogen produces a singlet, the pair of carbon hydrogens one give rise to a quadruplet and the three hydrogens of carbon two produce a triplet.
Explanation:
Answer:
The maximum wavelength of light for which a carbon-hydrogen single bond could be broken by absorbing a single photon = 290 nm
Explanation:
So to break a single C - H bond require = 
= 6.84 x 10⁻¹⁹ joule
Find the wavelength of a photon we use E = hν
⇒ E = 
Where h = Planck's constant = 6.626 x 10⁻³⁴ J.K⁻¹.Mole⁻¹
c = speed of light = 3 x 10⁸ m/sec
Wavelength = 
= 2.9 x 10⁻⁷ m
= 290 nm
∵ 1 nm = 10⁻⁹ m