The downward slope represents the relation between durability of titanium and temperature because with increase temperature, strength of titanium decreases.
<h3>Can titanium withstand temperatures?</h3>
Titanium alloys have high tensile strength to weight ratio, good toughness and an ability to bear extreme temperatures of more than 600 °Celsius. This shows that if temperature increase from more than 600 °Celsius, the strength of the titanium tends to decrease because it can not withstand to it so the graph comes to downward when the temperature exceeds to 600°C.
So we can conclude that the downward slope represents the relation between durability of titanium and temperature because with increase temperature, strength of titanium decreases.
Learn more about temperature here: brainly.com/question/4735135
#SPJ1
Explanation:
No of molecules=0.500×6.023×10²³=3.011×10²³ molecules
Answer:
A delta is formed when the river deposits its material faster than the sea can remove it. ... Cuspate - the land around the mouth of the river juts out arrow-like into the sea. The Ebro Delta. Bird's foot - the river splits on the way to the sea, each part of the river juts out into the sea, rather like a bird's foot.
I hope it's helpful!
Most atoms do not. For those atoms that do not have a full valence shell (which usually would contain eight electrons, except for hydrogen and helium, where it would contain two), something has to change. So nature's tendency toward a full valence shell will lead to one of two things: The gain or loss of electrons.
Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-
