Answer:
Got your back
Explanation:
If the ions derived from different atoms are isoelectronic species, then they all have same number of electrons in their electronic shells and will have got same electronic configuration but their nuclear charge will differ because of their difference in number of protons in the nucleus. With increase in number of protons in the nucleus the electrons are more attracted towards nucleus thereby causing the decrease in ionic radius. On this principle our problem will be solved
The given ions are
7N-3
→no. of proton
=7
and
no of electron
=10
8O-2
→
no. of proton
=8
and
no of electron
=10
9F-→
no. of proton=9
and no of electron=10
11Na→
no. of proton=11
and no of electron=10
12 Mg-3→
no. of proton=12 and
no of electron=10
Hence the increasing order of ionic radius is
12Mg-3<11Na+<9F-<8O-2<7N-3
To rmember ->For isoelectronic species lower the nuclear charge higher the radius
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
<h3>What is energy?</h3>
Energy is the ability to do work.
The primary source of energy on the earth is the sun.
The energy from the sun is used by producers to produce food on which other organisms depend on.
The energy from the sun gets to the humpback whale through producers such as plankton.
The path of energy flow from the sun to the humpback whale is as follows:
- Sun---> Plankton ---> Small fishes ---> Humpback whale.
Learn more about energy flow at: brainly.com/question/21786633
Answer:
C) formaldehyde, H2C=O.
Explanation:
Hello,
In this case, given that the hydrogen bondings are known as partial intermolecular interactions between a lone pair on an electron rich donor atom, particularly oxygen, and the antibonding molecular orbital of a bond between hydrogen and a more electronegative atom or group. Thus, among the options, C) formaldehyde, H2C=O, will exhibit hydrogen bonding since the lone pair of electrons of the oxygen at the carbonyl group, are able to interact with hydrogen (in the form of water).
Best regards.
Answer:
167 kJ
Explanation:
Given parameters
Change in enthalpy = 130 kJ (decrease)
Work done = -137 kJ
Change in energy, \delta = ?
From the first law of thermodynamics:
ΔH = ΔE + PΔV,
Where, ΔH= change in enthalpy
ΔE = change in Internal energy
Substituting values into the above formula —
130 kJ = ΔE + -137 kJ
130 kJ = ΔE - 137 kJ
therefore,
ΔE = (130 + 137 ) kJ
ΔE = 167 kJ
Therefore, the change in energy of the gas mixture during the reaction is 167 kJ.
Since the value of energy change Is positive, therefore this Is endothermic reaction