Answer:
Here are a few more examples:
Smoke and fog (Smog)
Dirt and water (Mud)
Sand, water and gravel (Cement)
Water and salt (Sea water)
Potassium nitrate, sulfur, and carbon (Gunpowder)
Oxygen and water (Sea foam)
Petroleum, hydrocarbons, and fuel additives (Gasoline)
Heterogeneous mixtures possess different properties and compositions in various parts i.e. the properties are not uniform throughout the mixture.
Examples of Heterogeneous mixtures – air, oil, and water, etc.
Examples of Homogeneous mixtures – alloys, salt, and water, alcohol in water, etc.
Explanation:
Answer:
148.04 kJ/mol
Explanation:
Let's consider the following thermochemical equation.
NO(g) + 1/2 O₂(g) → NO₂(g) ΔH°rxn = -114.14 kJ/mol
We can find the standard enthalpy of formation (ΔH°f) of NO(g) using the following expression.
ΔH°rxn = 1 mol × ΔH°f(NO₂(g)) - 1 mol × ΔH°f(NO(g)) - 1/2 mol × ΔH°f(O₂(g))
ΔH°f(NO(g)) = 1 mol × ΔH°f(NO₂(g)) - ΔH°rxn - 1/2 mol × ΔH°f(O₂(g)) / 1 mol
ΔH°f(NO(g)) = 1 mol × 33.90 kJ/mol - (-114.14 kJ) - 1/2 mol × 0 kJ/mol / 1 mol
ΔH°f(NO(g)) = 148.04 kJ/mol
Carbon -13 has 7 neutrons and carbon -12 has six neutrons. Carbon -12 is the most common isotope of Carbon. Carbon -14 is radioactive and vary rare. The symbols for the isotopes of Carbon atoms shown here indicate they each have six protons but mass numbers of 14, 13, and 12. Hope this helps. :)
It’s a exothermic reaction.
Answer:
- The limiting reagent is N2O4
- 14,09g
Explanation:
- First, we adjust the reaction.
+
⇄
- Second, we assume that the participating moles are equal to the stoichiometric ratios because we do not know the amounts of the reagents.
We can determinate what is the limiting reagent comparing of product amounts which can be formed from each reactant.
Using
to form 


Using
to form 


The limiting reagent is N2O4, because can produce only 0, 783 mol of H2O.
This is the minimum measure can be formed of each product.
∴ 
