Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L ...................1
so E = - L
put here value we get
E = - 8 ×
E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF
Answer: the theory that all matter is made up of tiny indivisible particles (atoms). According to the modern version, the atoms of each element are effectively identical, but differ from those of other elements, and unite to form compounds in fixed proportions.
chromatic aberration problem do refractor telescopes have that reflectors don't
<u>Explanation:</u>
Chromatic aberration is a phenom in which light rays crossing through a lens focus at various points, depending on their wavelength. Chromatic aberration is a dilemma in which lens or refracting, telescopes undergo from. The various image distances for the respective colors affect various image sizes for them.
This involves the creation of disturbing color fringes in the image. Chromatic aberration can be pretty well adjusted by the use of an achromatic doublet. Here, a positive biconvex lens is coupled with a negative lens placed backward with greater dispersion. Thus partly compensates for the chromatic aberration.