Answer:
The mass of heavier isotope is 345.6 amu.
Explanation:
Given data:
atomic wight of compound = 342.38 amu
lighter isotope mass = 340.91 amu
abundance of lighter isotope = 68.322%
mass of heavier isotope = ?
Solution:
average atomic mass = ( % age abundance of lighter isotope × its atomic mass) + (% age abundance of heavier isotope × its atomic mass) / 100
percentage of heavier isotope = 100- 68.322 = 31.678
Now we will put the values in formula.
342.38 = (68.322× 340.91) + (31.678 × X) / 100
342.38 = 23291.65302 + (31.678 × X) / 100
342.38 × 100 = 23291.65302 + (31.678 × X)
34238 -23291.65302 = (31.678 × X)
10946.35 / 31.678 = X
345.6 = X
The mass of heavier isotope is 345.6 amu.
Answer:
# In a familiar high-school chemistry demonstration, an instructor first uses electricity to split water into its constituent gases, Hydrogen and Oxygen. Then, by combining the two gases and igniting them with a spark, the instructor changes the gases back into water with a loud pop (That means the energy is released in the process).
# There are new other ways to produce water in laboratory, however, the scientists can not produce water in large quantity for the masses, because of some reasons.
1- Theoretically, this is possible, but it would be an extremely dangerous process. Since Hydrogen is extremely flammable and Oxygen supports combustion, it wouldn’t take much to create this force, but we also have an explosion. That’s why this process can be a deadly one if our experiment is big enough.
2- Personally, I think that it makes no sense to produce water in a laboratory ( or in a large plant) for people to use as daily water. The much more important thing we need to do is to save our environment, our planet Earth. Because the daily water people drink contains not just water molecules but other minerals, the marine life is depend not just in water molecules but diferent factors, etc.
Explanation:
This is just my personal opinion. Hope that can help you a little. Have a nice day
Answer:
First, place no. 5 in front of the CO2 in order to balance the carbon atoms. Next, place no. 6 in front of H2O to balance the hydrogen atoms. Lastly place no. 8 in front of the O2 so that there are 16 oxygen atoms on both sides of the reaction.
You have to use the Henderson-Hasselbalch equation. Keep in mind that because the Pka is given the equation changes form slightly:
PH = Pka + log[acid/base]
Step 1 (Figure out the concentrations):
0.282 M of Acid (C6H5OOH) - 0.150 M = 0.132 M of acid
0.282 M of Base (C6HCOO) + 0.150 M = 0.432 M of bas3
Step 2 (Plug into equation):
PH = Pka + log[acid/base]
PH = 4.20 + log[0.132 M/0.432 M]
PH = 3.69
Due to hydrogen bonding there is a formation of cage like structure called lattice in ice due to which <span> density of ice is less than that of water. Moreover, it is a known fact that density of water is maximum at 4°C.</span>