Answer:
I'm pretty sure the answer is 0 m/s²
Explanation:
The horizontal velocity of the second rock is 5 m/s, so if we pretend air resistance doesn't exist, it will maintain that horizontal velocity, meaning that there is no horizontal acceleration.
Explanation:
Given that,
(a) Work done by the electric field is 12 J on a 0.0001 C of charge. The electric potential is defined as the work done per unit charged particles. It is given by :



(b) Similarly, same electric field does 24 J of work on a 0.0002-C charge. The electric potential difference is given by :



Therefore, this is the required solution.
A box is sliding up an incline that makes an angle of 14.0° with respect to the horizontal. the coefficient of kinetic friction between the box and the surface of the incline is 0.180. the initial speed of the box at the bottom of the incline is 2.20 m/s. how far does the box travel along the incline before coming to rest?
Answer:
The electric current in the wire is 0.8 A
Explanation:
We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B= Magnetic field due to a straight and long wire that carries current
u= Free space permeability
I= Electrical current passing through the wire
a = Perpendicular distance from the wire to the point where the magnetic field is located
Magnetic Field Calculation
We cleared (I) of the formula (1):
Formula(2)

a =8cm=0.08m

We replace the known information in the formula (2)

I=0.8 A
Answer: The electric current in the wire is 0.8 A
Distance for which the bike is ridden = 30 km
Speed at which the bike is driven = 0.75 km/minute
Let us assume the number of minutes taken to travel the distance of 30 km = x
Now we already know the formula of speed can be written as
Speed = Distance traveled/ Time taken
0.75 = 30/x
0.75x = 30
x = 30/0.75
= 40 minutes
So the time taken for riding a distance of 30 km will be 40 minutes. I hope this procedure is simple enough for you to understand.