Answer:
Average atomic mass of the vanadium = 50.9415 amu
Isotope (I) of vanadium' s abundance = 99.75 %= 0.9975
Atomic mass of Isotope (I) of vanadium ,m= 50.9440 amu
Isotope (II) of vanadium' s abundance =(100%- 99.75 %) = 0.25 % = 0.0025
Atomic mass of Isotope (II) of vanadium ,m' = ?
Average atomic mass of vanadium =
m × abundance of isotope(I) + m' × abundance of isotope (II)
50.9415 amu =50.9440 amu× 0.9975 + m' × 0.0025
m'= 49.944 amu
Explanation:
Explanation:
The hydrological cycle is the continuous cycling of water between land, open water surfaces and the sea. This cycle begins with evaporation, sunlight evaporates water from the surface of earth, next condensation happens, the water absorbed is now used to form clouds, after these clouds are filled to the maximum, precipitation happens, this can be in the form of rainfall and snow, this cycle finalizes when the precipitation of water runs off the land and back into water sources.
Sources of water pollution:
- <em>During precipitation: </em>Smog can be gathered in the atmosphere, during precipitation this pollution can turn into acid rain.
- <em>During runoff:</em> After acid rain hits the ground this polluted water can run into water sources (lakes, rivers, reservoirs).To some extent rivers are a self-renewing resource, if a small quantity of pollution discharges in it the river can return to a clean, unpolluted condition, unfortunately, if the pollution is too big the renewing won't be possible, another problem is even though rivers get cleaned the pollution moves to the seas. Lakes are even more vulnerable to pollution, the flushing effect in these water bodies is less evident than in rivers.
I hope you find this information useful and interesting! Good luck!
Answer:
What is the molarity of a solution containing 5.00 moles of kcl in 2.00L of solution? Molarity= moles of solute/volume of solution in litre , so the problem looks like this : 7/. 569 , which is equivalent to 12.302 M .
Answer:

Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
Given: Kc = 0.50
Temperature = ![400^oC=[400+273]K=673K](https://tex.z-dn.net/?f=400%5EoC%3D%5B400%2B273%5DK%3D673K)
R = 0.082057 L atm.mol⁻¹K⁻¹
Δn = (2)-(3+1) = -2
Thus, Kp is:
