They'll vibrate at their characteristic resonant frequency. That depends on the material the object is made of and its shape.
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
Distance is the total length covered = 2m + 3m = 5m
Displacement is his distance from original position.
Displacement = 2m + (-3)m. Representing the 3m walked back as -3.
Displacement = 2m - 3m = -1m.
So his displacement is 1m behind his original starting point.
Answer:3764.282 KPa
Explanation:
Given gusher shoots oil at h=25 m
i.e. the velocity of jet is
v=\sqrt{2gh}[/tex]
v=22.147 m/s
Now the pressure loss in pipe is given by hagen poiseuille equation



For 25 m head in terms of Pressure

Total Pressure=
=3543.557+220.725=3764.282 KPa
Answer:
The answer is below
Explanation:
Let vₐ be the speed of airplane = 135 mph, vₙ be the speed of the wind = 70 mph and vₐₙ be the speed of the airplane relative to the wind.
The distance (d) = 135 miles, Δt = 1 hour, vₐₙ = 135 miles / 1 hour = 135 mph
vₐ = vₙ + vₐₙ
vₐ = vₐₙ
Therefore, vₐ, vₐₙ, vₙ can be represented by an isosceles triangle since vₐ = vₐₙ.
The direction of the wind θ is:
sin(θ / 2) = vₙ / 2vₐ
sin(θ / 2) = 70/ (2*135)
sin(θ / 2) = 0.2593
θ / 2 = sin⁻¹(0.2593) = 15
θ = 30⁰
2α = 180° - 30°
2α = 150°
α = 75°
a) The direction of the wind is 75° in the south east direction while the airplane is heading 30° in the north east direction.