m = mass of the circular hoop
r = radius of the hoop
I = moment of inertia of the hoop
moment of inertia of the hoop about the center of hoop is given as
I = m r²
k = distance of the point of suspension from center of mass = r
using parallel axis theorem
I' = moment of inertia of hoop about the point of suspension
I' = I + m k²
I' = m r² + m k²
I' = m r² + m r²
I' = 2 m r²
Time period of oscillation for the hoop is given as
T = 2π sqrt(I'/mgk)
T = 2π sqrt(2 m r²/(mgr))
T = 2π sqrt(2 r/g)
since 2r = diameter = d
T = 2π sqrt(d/g)
Answer:
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. 60 km/h to the north).
Explanation:
The freezing point is the same as the melting point.
If it freezes at -58°C, hence the melting point is also <span>-58°C.</span>
Answer:
a circuit is a complete loop that carries a current in the form of electrons from negative to positive
Explanation:
The difference between current and circuit is that a circuit is a complete loop that carries a current in the form of electrons from negative to positive
.
In a circuit, there are difference elements or components such as the battery, wire, resistor. The goal of a circuit arrangement is to completely carry current from one end to another.
The current is the quantity of charge that flows within the circuit per unit of time.
So, the battery supplies the electromotive force to move the current round the circuit.
Acceleration required to stop rocket:
2as = v² - u²
a = -(18)²/(2 x 265)
a = 0.61 m/s² upwards
Resultant force = mass x acceleration
Resultant force = upwards thrust - weight
1.14 x 10⁴ x 0.61 = Thrust - 1.14 x 10⁴ x 1.6
Thrust = 2.52 x 10⁴ Newtons