Complete Question
The complete question is shown on the first uploaded image
Answer:
The electric field at that point is
Explanation:
From the question we are told that
The radius of the inner circle is
The radius of the outer circle is
The charge on the spherical shell
The magnitude of the point charge at the center is
The position we are considering is x = 0.60 m from the center
Generally the electric field at the distance x = 0.60 m from the center is mathematically represented as
substituting values
where k is the coulomb constant with value
substituting values
Answer:
Y = V / f where Y equals wavelength
4 Y1 = V / f1 for a closed pipe the wavelength is 1/4 the length of the pipe
2 Y2 = V / f2 for the open pipe the wavelength is 1/2 the length of the pipe
Y1 / Y2 = 2 = f2 / f1 dividing equations
f2 = 2 f1
the new fundamental frequency is 2 * 130.8 = 261.6
(The new wavelength is 1/2 the original wavelength so the frequency must double to produce the same speed.
Complete Question
A certain refrigerator, operating between temperatures of -8.00°C and +23.2°C, can be approximated as a Carnot refrigerator.
What is the refrigerator's coefficient of performance? COP
(b) What If? What would be the coefficient of performance if the refrigerator (operating between the same temperatures) was instead used as a heat pump? COP
Answer:
a
b
Explanation:
From the question we are told that
The lower operation temperature of refrigerator is
The upper operation temperature of the refrigerator is
Generally the refrigerators coefficient of performance is mathematically represented as
=>
=>
Generally if a refrigerator (operating between the same temperatures) was instead used as a heat pump , the coefficient of performance is mathematically represented as
=>
=>
Answer:
7.08 m/s²
Explanation:
Given:
v₀ = 20.0 m/s
v = 105 m/s
t = 12.0 s
Find: a
v = at + v₀
105 m/s = a (12.0 s) + 20.0 m/s
a = 7.08 m/s²