Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Answer: b. The waste generated is hazardous and must be disposed of.
c. Nuclear material can be spilled into the ocean if reactors are near the coast.
d. A large amount of cold water is generated, which must be stored somewhere.
Explanation:
The main environmental costs for produced during the nuclear power plant consists of procurement of fuel and the thermal load is also produced with cold water discharge in the sea. This can contaminate the sea, hence, must be stored somewhere. The nuclear waste consists of radioactive substances which are hazardous for the environment. The nuclear based electricity does not produce carbon dioxide.