<span>C. It is the difference in electrical potential energy between two places in an electric field.</span>
ANSWER:
22 Hz.
Explanation:
Frequency = (speed) divided by (wavelength) = (330) / (15) =
The planet of an item will remain constant across the planet, but if you give it more mass, the gravitational force increases while the acceleration due to gravity remains constant.
<h3 /><h3>What is the difference between mass and weight?</h3>
The mass of the body is defined as the amount of matter a body has. It is denoted by m and its unit is kg. Mass is the quantity on which a lot of physical quantity depends.
Weight is defined as the amount of force an object exerts on the surface. It is given as the product of mass and the gravitational pull.
Mass is an independent quantity it never depends on the other. While weight is a dependent quantity that depends upon the gravitational pull.
The value of gravitational pull is different in the different parts of the universe. For example, on the earth, the value of gravitational acceleration is 9.81 m/sec².While on the moon it is g/6.
Weight is change according to the place or surrounding while the mass of the body is constant everywhere.
The planet of an item will remain constant across the cosmos, but if you give it more mass, the gravitational force increases while the acceleration of gravity remains constant.
If a planet's gravity weakens, the weight of that planet will likewise be altered. With an increase in mass, weight also rises.
Hence, the gravitational force increases while the acceleration due to gravity remains constant for the given case.
To learn more about the mass refer to the link;
brainly.com/question/19694949
#SPJ1
Kinetic energy means movement. This means that the more something moves, the more kinetic energy it will have! And the faster something moves, the more heat it produces! Altogether, this means that the more Kinetic energy something has, the hotter it will be!
The opposite is also true. The less something moves, it will have less Kinetic energy and the colder it will get.
If you're having trouble understanding this, think of it like how the particles in water move compared to how the particles in ice move. The particles in water are free flowing and can move wherever they want. If they get colder, they won't move as much, and eventually they'll stop flowing around, forming a solid and staying colder than the water will get.
I’d say It’s B since the plants and fossils are big indicators