Answer:
So the specific heat of the liquid B is greater than that of A.
Explanation:
Liquid A is hotter than the liquid B after both the liquids are heated identically for the same duration of time from the same initial temperature then according to heat equation,

where:
m = mass of the body
c = specific heat of the body
change in temperature of the body
The identical heat source supplies the heat for the same amount of time then the quantity of heat supplied is also equal.
So for constant heat, constant mass the temperature change is inversely proportional to the specific of heat of the liquid.


So the specific heat of the liquid B is greater than that of A.
Answer:
304 meters downstream
Explanation:
The given parameters are;
The speed of the swimmer = 2.00 m/s
The width of the river = 73.0 m
The speed of the river = 8.00 m/s
Therefore;
The direction of the swimmer's resultant velocity = tan⁻¹(8/2) ≈ 75.96° downstream
The distance downstream the swimmer will reach the opposite shore = 4 × 73 = 304 m downstream
The distance downstream the swimmer will reach the opposite shore = 304 m downstream
<em>A</em> - <em>B</em> = (10<em>i</em> - 2<em>j</em> - 4<em>k</em>) - (<em>i</em> + 7<em>j</em> - <em>k</em>)
<em>A</em> - <em>B</em> = 9<em>i</em> - 9<em>j</em> - 3<em>k</em>
|<em>A</em> - <em>B</em>| = √(9² + (-9)² + (-3)²) = √189 = 3√19
Answer:Frequency = 3.525 Hertz
Explanation:In static equilibrium, kd =mg
Where k= effective spring constant of the spring.
mg= The weight of the car.
d= static deflection.
Therefore, w =SQRTg/d
w = SQRT 9.81/0.02
w= 22.15 rad/sec
Converting to Hertz unit for frequency
1 rad/s = 0.1591
22.15rad/s=?
22.15 × 0.1591= 3.525 hertz