In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
The decibel system of sound intensity operates by a logarithmic scale, meaning that sound intensity increases exponentially in relation to the decibel rating.
For decibels, the equation between intensity and the dB equivalent is:
dB = 10log(i),
where “i” is the intensity of the sound. The ten in front of the log means that an increase in ten dB results in a tenfold increase in sound intensity; for example, a 30 dB sound is ten times softer than a 40 dB sound.
In this case, a sound with a dB of 80 would be 1000 times more intense than a 50 dB sound, so the decibel rating of B is 80.
Hope this helps!
Answer:

Explanation:
Given the mass as M, the rotational inertia of the mower is;

-The roller doesn't slip while rolling;


Answer:
V=22.4m/s;T=2.29s
Explanation:
We will use two formulas in order to solve this problem. To determine the velocity at the bottom we can use potential and kinetic energy to solve for the velocity and use the uniformly accelerated displacement formula:

Solving for velocity using equation 1:

Solving for time in equation 2:
