First one is D and Second one is B
-- If 2,000 newtons of force were applied through a distance of 1,000 meters,
then 2,000,000 newton-meters = 2,000,000 joules of work were done.
-- 45 minutes = (45 x 60) = 2,700 seconds
-- Power = (work) / (time) = (2,000,000 j) / (2,700 s) = <u>740.74 watts</u>
Interestingly, that's almost exactly 1 horsepower. (0.99295... of 746 watts)
Answer:
u= 187.61 ft/s
Explanation:
Given that
g= - 32 ft/s²
The maximum height ,h= 550 ft
Lets take the initial velocity = u ft/s
We know that
v²=u² + 2 g s
v=final speed ,u=initial speed ,s=height
When the object reach at the maximum height then the final speed of the object will become zero.
That is why
u²= 2 x 32 x 550
u²= 35200
u= 187.61 ft/s
That is why the initial speed will be 187.61 ft/s
Answer:
Option C
Explanation:
given,
velocity of airplane = 80 m/s
angle with the horizontal = 15°
speed of the ground= ?
when the plane is taking off the horizontal component of the velocity is v cosθ
so,
ground speed of the airplane is = 
=
v = 77.27 m/s
horizontal velocity of the air plane comes out to be 77.27 m/s ≅ 77 m/s
so, the correct option is Option C
Newton said . . . F = m a
Divide each side by m . . . a = F / m
Acceleration = (force) / (mass)
Acceleration = (145.O N) / (40.0 kg)
<em>Acceleration = 3.625 m/s²</em>