Well there are a couple ways.
1: The easiest, plant cells have a cell wall or extra protection. You will not find this on an animal cell, as there is only a membrane.
2: Chloroplast. This also will not be found in animal cells as they produce the plant's green color as well as the sugar.
Hope this helps!
Answer:
time is 5.973826 sec
Explanation:
Given data
diameter D = 6.0 mm 6× m
separated d = 0.010 m
distance (dis) 185 m
speed s = 16 m/s
wavelength = 550 nm = 550 m
to find out
How much time passes
solution
we know that for resolution we use Rayleigh's Criterion i.e
θ = 1.22 wavelength / diameter = separated / distance 1
we calculate distance 1 by put value wavelength, diameter and separated
distance 1 = diameter × separated / 1.22 wavelength
distance 1 = 6× × 0.010 / 1.22 × 550 ×
distance 1 = 89.418778
so time will be i.e = distance (dis) - distance 1 / speed
time = ( 185 - 89.418778) / 16
time = 5.973826 sec
time is 5.973826 sec
<span>In order to calculate an average, we should sum all numbers and divide them by quantity.
Let’s work with qualifications first. Let’s say you got a 10 in 1 exam, then an 8 in 2 exams and a 4 in 2 exams. Your average will be:
= (10*1+8*2+4*2) / 5 = 6.8
If 6 is the minimum, you will pass.
There is another way to calculate this average: applying distributive property.
= 10*1/5+8*2/5+4*2/5 = 6.8
Remember you can convert the fractions into equivalent fractions: 1/5 = 20/100; 2/5 = 40/100
= 10*20/100+8*20/100+4*20/100 = 6.8
We actually don’t have the number of atoms of each mass… we have the percentage instead! So we need to learn this last method for atoms.
Let’s go back to our atoms problem:
73.71 % of atoms have a mass of 27.98 u
14.93 % of atoms have a mass of 28.98 u
11.36 % of atoms have a mass of 29.97 u
So let’s put that in the formula:
Average mass = 27.98 u*73.71 /100 + 28.98 u*14.93 /100 + 29.97u*11.36 /100
So what you have to know is that a percentage can be converted into a fraction, and you should work that fraction in order to find the average. We can make the calculus shorter putting 100 as the common denominator:
Average mass = (27.98 u*73.71 + 28.98 u*14.93 + 29.97u*11.36)/100
So actually we are taking the percentage as if it was the quantity, and 100 as if it was the total (the total of all percentages is always 100). Maybe we don’t have 100 atoms, but it will be the same proportion anyway, whatever number we have! And here it is the result:
Average mass = 28,36u
</span>
Answer:
a.3.84m
b.-106.67m/s
c.947.3m/s^2
d.70.17 rad
e.2.5Hz
d.0.4secs
Explanation:
Given x=(7.8)cos[5πrad/s)t+π/3)]
a.Displacement at t=4.4
7.8cos(5π*4.4+π\3)=3.84m
b.velocity
V= dx/dr=-5π(7.8)sin(5πrad/s)t+π\3
at t=4.4
-5π(7.8)sin(5π*4.4+π\3)=-106.67m/s
c.acceleration
a=d^2x/dr^2
-(5π)^2(7.8) cos (5π*t+π\3)
at t=4.4
-(5π)^2(7.8)cos(5π*4.4+π\3)=-947.3m/s^2
d. Phase =(5πrad/s)t+π\3
At t=4.4
5π×4.4+π\3=70.17 rad
e.frequency
Given x= 7.8cos(5πt+π\3
Compare with x=Acos(2πft)
2πft=5πt
F=2.5Hz
f.T=1\f
T=1/2.5=0.4sec
The answer is; metamorphic
Occurs when igneous and sedimentary rocks are subjected to extreme temperatures and pressure such that their chemical composition changes. Examples of metamorphic rocks are; marble (that metamorphoses from limestone rock), quartzite (from sandstone). Other types of metamorphic rock include gneiss and schist.