When the seasons change from winter to spring, the wolves inner layer of fur, which traps air and insulates the wolf from harsh cold temperatures, is shed to keep the wolf cool when the heat starts to come back.
<span>All metals have similar properties BUT, there can be wide variations in melting point, boiling point, density, electrical conductivity and physical strength.<span>To explain the physical properties of metals like iron or sodium we need a more sophisticated picture than a simple particle model of atoms all lined up in close packed rows and layers, though this picture is correctly described as another example of a giant lattice held together by metallic bonding.</span><span>A giant metallic lattice – the <span>crystal lattice of metals consists of ions (NOT atoms) </span>surrounded by a 'sea of electrons' that form the giant lattice (2D diagram above right).</span><span>The outer electrons (–) from the original metal atoms are free to move around between the positive metal ions formed (+).</span><span>These 'free' or 'delocalised' electrons from the outer shell of the metal atoms are the 'electronic glue' holding the particles together.</span><span>There is a strong electrical force of attraction between these <span>free electrons </span>(mobile electrons or 'sea' of delocalised electrons)<span> (–)</span> and the 'immobile' positive metal ions (+) that form the giant lattice and this is the metallic bond. The attractive force acts in all directions.</span><span>Metallic bonding is not directional like covalent bonding, it is like ionic bonding in the sense that the force of attraction between the positive metal ions and the mobile electrons acts in every direction about the fixed (immobile) metal ions of the metal crystal lattice, but in ionic lattices none of the ions are mobile. a big difference between a metal bond and an ionic bond.</span><span>Metals can become weakened when repeatedly stressed and strained.<span><span>This can lead to faults developing in the metal structure called 'metal fatigue' or 'stress fractures'.</span><span>If the metal fatigue is significant it can lead to the collapse of a metal structure.</span></span></span></span>
Fresh water pollutants are substances which pollute fresh water and industrial waste, is most harmful fresh water pollutant to man and aquatic organisms.
<h3>What are pollutants?</h3>
Pollutants are substances which cause harm when they are present in the environment.
Pollutants include chemicals such as petroleum and material such as sewage.
The presence of pollutants in freshwater results in water pollution and make the water unfit for drinking purposes and also harms aquatic life in freshwaters.
Some freshwater pollutants include:
- Farming wastes
- Household pollutants
- Industrial wastes
- Erosion
- Oil and Gasoline
- heat
Of these pollutants, the most dangerous fresh water pollutant is industrial wastes as they kill aquatic organisms most due to the presence of harmful chemicals in them.
Therefore, fresh water pollutants such as industrial waste is most harmful to man and aquatic organisms.
Learn more about pollutants at: brainly.com/question/1235358
#SPJ1
Answer:
its orginal charge is none then through the reaction it is reduced because then final charge is -1 meaning is went down 1 so its charge was reduced
Hope this helps! :)
Answer:
1.25 hours or 75 minutes or 1 hour and 15 minutes
Explanation: