Answer:
Yes
Explanation:
By definition, the equilibrium constanct, Kc, for the reaction A ⇒ 2B is
= [A]^1 / [B]^2
Substitute [A] = 4 and [B] = 2 in the equation,
[A]^1 / [B]^2
= 4^1 / 2^2
= 1
= Kc
So yes the reaction is at equilibrium.
This behavior helps the prairie dog from being prey upon by coyote.
Prairie dogs live in burrow and they normally do not move much away from their burrows. When they sense danger they will dash quickly back into their burrows. This behavioral adaptation protect them from predators.
For this, you need to know 1) the mass of the hydrate and 2) the mass of the anhydrous salt. Once you have both of these, you will subtract 1) from 2) to find the mass of the water lost.
From the problem, you know that 1) = 2.000 g.
Now you need to find 2). You know that your crucible+anhydrous salt is 5.022 g. To find just the anhydrous salt, subtract the mass of the crucible (3.715 g).
1) = 5.022 g - 3.715 g = 1.307 g
Now you can complete our original task.
Mass H2O = 2) - 1) = 2.000 g - 1.307 g = 0.693 g.