Answer:

Explanation:
We have an uniformly accelerated motion, with a negative acceleration. Thus, we use the kinematic equations to calculate the distance will it take to bring the car to a stop:

The acceleration can be calculated using Newton's second law:

Recall that the maximum force of friction is defined as
. So, replacing this:

Now, we calculate the distance:

A force is a push or pull upon an object resulting from the object's interaction with another object.
Answer:
Explanation:
Mass of ball Is m=96.1g=0.0961kg
Height above spring is 59.1cm
L=0.591m
Extension of the spring is 4.75403cm
e=0.0475403m
Then the distance the ball traveled is H=L+e
H=0.591+0.0475403
H=0.6385403m
Then, the potential energy of the ball is given as
P.E=mgh
P.E=0.0961×9.81×0.6385403
P.E=0.602J
From conservation of energy, energy cannot be created nor destroy but can be transferred from one form to another
Then, the P.E is transferred to the work done by the spring
Then, Work done by spring is given as
W=½ke²
W=P.E=½×k×0.0475403²
0.602=½×k×0.0475403²
k=0.602×2/0.0475403²
k=532.72N/m
The spring constant is 532.72 N/m
Answer:
Tangential speed, v = 2.64 m/s
Explanation:
Given that,
Mass of the puck, m = 0.5 kg
Tension acting in the string, T = 3.5 N
Radius of the circular path, r = 1 m
To find,
The tangential speed of the puck.
Solution,
The centripetal force acting in the string is balanced by the tangential speed of the puck. The expression for the centripetal force is given by :



v = 2.64 m/s
Therefore, the tangential speed of the puck is 2.64 m/s.
Answer:
Explanation:
F = mω²R
F = 15(2π/8.5)²(7.8)
F = 63.93044788...
F = 63.9 N
answer a) is the closest. No idea how they got a value that low unless they used a poor approximation for π.