Answer:
Densidad de la placa = 20 g/cm³.
La placa no es de oro.
Explanation:
Para encontrar la densidad de la placa rectangular primero debemos hallar su volumen:
Ahora, encontremos al densidad de la placa:
![d = \frac{m}{V} = \frac{20 g}{1 cm^{3}} = 20 g/cm^{3}](https://tex.z-dn.net/?f=%20d%20%3D%20%5Cfrac%7Bm%7D%7BV%7D%20%3D%20%5Cfrac%7B20%20g%7D%7B1%20cm%5E%7B3%7D%7D%20%3D%2020%20g%2Fcm%5E%7B3%7D%20)
Dado que la densidad del oro es 19.32 g/cm³ y que la densidad de la placa rectangular calculada es 20 g/cm³, podemos decir que dicha placa no es de oro.
Espero que te sea de utilidad!
With the use of electric force formula, the direction and magnitude of the net force exerted on the point charge q3 are 9.9 x
N and 66 degrees
ELECTRIC FORCE (F)
F = ![\frac{KQq}{d^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7BKQq%7D%7Bd%5E%7B2%7D%20%7D)
Where K = 9 x
N
/![C^{2}](https://tex.z-dn.net/?f=C%5E%7B2%7D)
The distance between
and
can be calculated by using Pythagoras theorem.
d = ![\sqrt{33^{2} + 33^{2} }](https://tex.z-dn.net/?f=%5Csqrt%7B33%5E%7B2%7D%20%2B%2033%5E%7B2%7D%20%20%7D)
d = 46.7 cm = 0.467 m
For force
, substitute all the parameters into the formula above
= (9 x
x 3 x 1)/![0.467^{2}](https://tex.z-dn.net/?f=0.467%5E%7B2%7D)
= 2.7 x
/0.218
= 1.24 x
N
For force
, substitute all the parameters into the formula above
= (9 x
x 3 x 4)/![0.33^{2}](https://tex.z-dn.net/?f=0.33%5E%7B2%7D)
= 1.08 x
/0.1089
= 9.92 x
N
For force
, substitute all the parameters into the formula above
= (9 x
x 3 x 2)/![0.33^{2}](https://tex.z-dn.net/?f=0.33%5E%7B2%7D)
= 5.4 x
/0.1089
= 4.96 x
N
Summation of forces on Y component will be
=
-
Sin 45
= 9.92 x
- 1.24 x
Sin 45
= 9.04 x
N
Summation of forces on X component will be
=
-
Cos 45
= 4.96 x
- 1.24 x
Sin 45
= 4.08 x
N
Net Force = ![\sqrt{F_{x} ^{2} + F_{y} ^{2} } }](https://tex.z-dn.net/?f=%5Csqrt%7BF_%7Bx%7D%20%5E%7B2%7D%20%2B%20F_%7By%7D%20%5E%7B2%7D%20%20%7D%20%7D)
Net force = ![\sqrt{(4.08*10^{11}) ^{2} + (9.04*10^{11}) ^{2} }](https://tex.z-dn.net/?f=%5Csqrt%7B%284.08%2A10%5E%7B11%7D%29%20%5E%7B2%7D%20%2B%20%289.04%2A10%5E%7B11%7D%29%20%5E%7B2%7D%20%20%7D)
Net force = 9.9 x
N
The direction will be
Tan ∅ =
/![F_{x}](https://tex.z-dn.net/?f=F_%7Bx%7D)
Tan ∅ = 9.04 x
/ 4.08 x ![10^{11}](https://tex.z-dn.net/?f=10%5E%7B11%7D)
Tan ∅ = 2.216
∅ =
(2.216)
∅ = 65.7 degrees
Therefore, the direction and magnitude of the net force exerted on the point charge q3 are 9.9 x
N and 66 degrees approximately.
Learn more about electric Force here: brainly.com/question/4053816
Explanation:
Let the speeds of father and son are
. The kinetic energies of father and son are
. The mass of father and son are ![m_f\ and\ m_s](https://tex.z-dn.net/?f=m_f%5C%20and%5C%20m_s)
(a) According to given conditions, ![K_f=\dfrac{1}{3}K_s](https://tex.z-dn.net/?f=K_f%3D%5Cdfrac%7B1%7D%7B3%7DK_s)
And ![m_s=\dfrac{1}{4}m_f](https://tex.z-dn.net/?f=m_s%3D%5Cdfrac%7B1%7D%7B4%7Dm_f)
Kinetic energy of father is given by :
.............(1)
Kinetic energy of son is given by :
...........(2)
From equation (1), (2) we get :
..............(3)
If the speed of father is speed up by 1.5 m/s, so the ratio of kinetic energies is given by :
![\dfrac{K_f}{K_s}=\dfrac{1/2m_f(v_f+1.5)^2}{1/2m_sv_s^2}](https://tex.z-dn.net/?f=%5Cdfrac%7BK_f%7D%7BK_s%7D%3D%5Cdfrac%7B1%2F2m_f%28v_f%2B1.5%29%5E2%7D%7B1%2F2m_sv_s%5E2%7D)
![v_s^2=4(v_f+1.5)^2](https://tex.z-dn.net/?f=v_s%5E2%3D4%28v_f%2B1.5%29%5E2)
Using equation (3) in above equation, we get :
![v_f=\dfrac{1.5}{\sqrt3-1}=2.04\ m/s](https://tex.z-dn.net/?f=v_f%3D%5Cdfrac%7B1.5%7D%7B%5Csqrt3-1%7D%3D2.04%5C%20m%2Fs)
(b) Put the value of
in equation (3) as :
![v_s=7.09\ m/s](https://tex.z-dn.net/?f=v_s%3D7.09%5C%20m%2Fs)
Hence, this is the required solution.
Force is transferred from the moving ball to the stationary ball.