When the balanced force is applied on the ball It will roll away from the force.
<u>Explanation:</u>
- A ball lies on the floor in rest. If the balanced force is applied to
the ball, the force will push away.
- The forces would include gravity and the forces of air particles entering the ball from almost all directions.
- And the ground is exercising the force and shifting away from the impact.
<u></u>
<u />
D. Heat energy will be transferred within the system and if left long enough, there will be enough transferred energy to make both of them the same temperature.
Answer: The velocity with which the sand throw is 24.2 m/s.
Explanation:
Explanation:
acceleration due to gravity, a = 3.9 m/s2
height, h = 75 m
final velocity, v = 0
Let the initial velocity at the time of throw is u.
Use third equation of motion
The velocity with which the sand throw is 24.2 m/s.
Answer:
I'm sorry but I dont really know this answer
Answer:
P = 0.25 W
Explanation:
Given that,
The emf of the battry, E = 2 V
The resistance of a bulb, R = 16 ohms
We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

So, 0.25 W power is delivered to the bulb.