1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksandrR [38]
3 years ago
14

What is efficiency?​

Physics
1 answer:
tatyana61 [14]3 years ago
5 0

Explanation:

the state or quality of being efficient or able to accomplish something

You might be interested in
A 4.04 kg block slides down a smooth, frictionless plane having an inclination of 30◦. The acceleration of gravity is 9.8 m/s^2.
aleksandrvk [35]

Answer:

Explanation:

What a lot of words to solve such a simple problem! The perpendicular force is the one that is pushing straight down on the plane. There is no side to side movement here or friction acting on this dimension at all. Perpendicular force is the same as the weight of the block. That's it! Perpendicular force is also normal force which is the same thing as weight:

w = mg so

w = (4.04)(9.8) and

w = 4.0 × 10¹ N

5 0
3 years ago
What is Lorentz law?​
Reika [66]
These two electric and magnetic forces can be related together into one electromagnetic force through the Lorentz force law. This law states that the total force acting on a charged particle due to electric and magnetic fields is equal to the sum of the electric and magnetic forces acting on it.
6 0
4 years ago
Vector A has a magnitude of 4.0m and points 30 south of east vector B has a magnitude of 2.0m and points 30 north of west the re
valentina_108 [34]

Answer:

2.06 m at 49.7 or 50 degree South of East

Explanation:

take x axis and y axis  and follow as explained in attachment

Download pdf
6 0
3 years ago
A projectile is launched at an angle of 36.7 degrees above the horizontal with an initial speed of 175 m/s and lands at the same
Softa [21]

Answer:

a) The maximum height reached by the projectile is 558 m.

b) The projectile was 21.3 s in the air.

Explanation:

The position and velocity of the projectile at any time "t" is given by the following vectors:

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

v = (v0 · cos α, v0 · sin α + g · t)

Where:

r = position vector at time "t"

x0 = initial horizontal position

v0 = initial velocity

t = time

α = launching angle

y0 = initial vertical position

g = acceleration due to gravity (-9.80 m/s² considering the upward direction as positive).

v = velocity vector at time t

a) Notice in the figure that at maximum height the velocity vector is horizontal. That means that the y-component of the velocity (vy) at that time is 0. Using this, we can find the time at which the projectile is at maximum height:

vy = v0 · sin α + g · t

0 = 175 m/s · sin 36.7° - 9.80 m/s² · t

-  175 m/s · sin 36.7° /  - 9.80 m/s² = t

t = 10.7 s

Now, we have to find the magnitude of the y-component of the vector position at that time to obtain the maximum height (In the figure, the vector position at t = 10.7 s is r1 and its y-component is r1y).

Notice in the figure that the frame of reference is located at the launching point, so that y0 = 0.

y = y0 + v0 · t · sin α + 1/2 · g · t²

y = 175 m/s · 10.7 s · sin 36.7° - 1/2 · 9.8 m/s² · (10.7 s)²

y = 558 m

The maximum height reached by the projectile is 558 m

b) Since the motion of the projectile is parabolic and the acceleration is the same during all the trajectory, the time of flight will be twice the time it takes the projectile to reach the maximum height. Then, the time of flight of the projectile will be (2 · 10.7 s) 21.4 s. However, let´s calculate it using the equation for the position of the projectile.

We know that at final time the y-component of the vector position (r final in the figure) is 0 (because the vector is horizontal, see figure). Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

0 = 175 m/s · t · sin 36.7° - 1/2 · 9.8 m/s² · t²

0 = t (175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t)

0 = 175 m/s ·  sin 36.7 - 1/2 · 9.8 m/s² · t

-  175 m/s ·  sin 36.7 / -(1/2 · 9.8 m/s²) = t

t = 21.3 s

The projectile was 21.3 s in the air.

7 0
3 years ago
You attach a meter stick to an oak tree, such that the top of the meter stick is 1.87 meters above the ground. Later, an acorn f
Verdich [7]

To solve this problem we will apply the concepts related to the kinematic equations of linear motion. We will calculate the initial velocity of the object, and from it, we will calculate the final position. With the considerations made in the statement we will obtain the total height. Initial velocity of the acorn,

u = 0m/s

Also, it is given that the acorn takes 0.201s to pass the length of the meter stick.

s = ut+\frac{1}{2} at^2

Replacing,

1 = u(0.141)+ \frac{1}{2} (9.8)(0.141)^2

u =6.4013m/s

The height of the acorn above the meter stick can be calculated as,

v^2 = u^2 +2gh

h = \frac{v^2-u^2}{2g}

h = \frac{6.4013^2-0^2}{2(9.8)}

h = 2.0906m

Also the top of the meter stick is 1.87m above the ground hence the height of the acorn above the ground is

h = 2.0906+1.87

h = 3.9606m

4 0
4 years ago
Other questions:
  • Does a seagull sitting on top of a fence have kinetic energy
    10·2 answers
  • Which policy has a cost efficient way to reduce sulfur dioxide emissions?
    8·1 answer
  • The _________ principle states that the net electrical force on a specific charge is equal to the sum of the vector components o
    10·2 answers
  • If a car is moving to the left with constantvelocity, one can conclude thatthere mustbe no forces applied to the car.the netforc
    14·1 answer
  • A player kicks a football into the air. It slows to a stop at its highest point in the air before falling to the ground. Which s
    6·2 answers
  • A Chinook salmon can jump out of water with a speed of 7.20 m/s . How far horizontally can a Chinook salmon travel through the a
    15·1 answer
  • Pls help! True or False?
    9·2 answers
  • Sit in the chair and put your arms out.
    13·1 answer
  • The photographer realizes that with the lens she is currently using, she can't fit the entire landscape she is trying to photogr
    10·1 answer
  • A copper block weighing 2 kg is dropped from a height of 20m. what is the rise in the temperature of the copper block after it h
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!