Diagram A shows the Lewis structure (LS) of CH_2O. The formal charge on each atom is zero.
To get the formal charge (FC) on the atoms, cut each bond in half, as in <em>Diagram B</em>. Each atom gets the electrons on its side of the cut.
Formal charge = valence electrons in isolated atom - electrons on bonded atom
FC = VE - BE
<em>On O:
</em>
VE = 6
BE = 2 lone pairs 2 + 2 bonding electrons = 4 + 2 = 6
FC = 6 – 6 = 0.
<em>On H:
</em>
VE = 1
BE = 1 bonding electron
FC = 1 – 1 = 0
<em>On C:
</em>
VE = 4
BE = 1 in each single bond + 2 in the double bond = 2 + 2 = 4
FC = 4 - 4 = 0
<span>In the question ' which of the following most likely require intermolecular force', options A and C given are definitely not the correct answers. Among the items listed in the questions, the one that will most likely required an intermolecular force is a rock maintaing its solid shape. Thus, the correct option is B. Intermolecular forces are forces which maintain chemical interactions between molecules of a particular susbstance and other types of paticles that may be present in the substance. Rocks are made up of differet particles and their structures are held together by different types of intermolecular forces depending on the types of particles present in the rock. Intermolecular forces can only occur among molecules and other particles in a compound that is why the other two options are wrong. Intermolecular force can either be attractive or repulsive. Attraction occurs between molecules of opposite charges, that is, positive and negative charges while repulsion occurs between particles of like charges, for intstance, between positive and positive charges. The Intermolecular forces that exist in a compound maintaings the integrity of the structure of that compound. Intermolecular forces in compounds exist in different forms, we have electrovalent bonds, covalent bonds, hydrogen bond, vander waals forces, etc. The type of molecules that exist in a compound will determine the type of intermolecular forces that will exist among the molecules of that substance. Electrovalent bonds are the strongest type of intermolecular force and it normally exist between metals and non metals. Covalent bonds involved sharing of electrons among the participating elements while vander waals forces are the weakest form of intermolecular forces. Forces are often required to break intermolecular forces apart. Breaking the intermolecular forces apart will destroy the structure of the substance inlvolved.</span>
Answer:
i know 3, reproduction, organisms, and variations in traits
Explanation:
Answer:
142.82 g
Explanation:
The following data were obtained from the question:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Density of gol= 19.3 g/cm³
Mass of gold =.?
Next, we shall determine the volume of the gold. This can be obtained as follow:
Volume of water = 12 mL
Volume of water + gold = 19.4 mL
Volume of gold =.?
Volume of gold = (Volume of water + gold) – (Volume of water)
Volume of gold = 19.4 – 12
Volume of gold = 7.4 mL
Finally, we shall determine the mass of the gold as follow:
Note: 1 mL is equivalent to 1 cm³
Volume of gold = 7.4 mL
Density of gol= 19.3 g/cm³ = 19.3 g/mL
Mass of gold =?
Density = mass /volume
19.3 = mass of gold /7.4
Cross multiply
Mass of gold = 19.3 × 7.4
Mass of gold = 142.82 g
Therefore, the mass of the gold pebble is 142.82 g