<h3>
Answer:</h3>
0.0253 mol H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 0.456 g H₂O (water)
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of H - 1.01 g/mol
[PT] Molar Mass of O - 16.00 g/mol
Molar Mass of H₂O - 2(1.01) + 16.00 = 18.02 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.025305 mol H₂O ≈ 0.0253 mol H₂O
Molar mass
C₂H₄O₂ = 60.0 g/mol
n = mass / molar mass
3.00 = mass / 60.0
m = 3.00 * 60.0
m = 180 g of <span>C₂H₄O₂
hope this helps!</span>
Answer:
C.Melt both cubes and look for a broader range of melting temperatures. The one that melts over a broader range of temperatures is the amorphous solid.
Explanation:
Amorphous solids is one that do not have a fixed melting points but melt over a wide range of temperature due to the irregular shape hence its name. Contrariwise crystalline solids, have a fixed and sharp melting point.
This comes in handy to solve the riddle. We can characterise the pair with the melting point property.
Answer:
K(48.5°C) = 1.017 E-8 s-1
Explanation:
- CH3Cl + H2O → CH3OH + HCl
at T1 = 25°C (298 K) ⇒ K1 = 3.32 E-10 s-1
at T2 = 48.5°C (321.5 K) ⇒ K2 = ?
Arrhenius eq:
- K(T) = A e∧(-Ea/RT)
- Ln K = Ln(A) - [(Ea/R)(1/T)]
∴ A: frecuency factor
∴ R = 8.314 E-3 KJ/K.mol
⇒ Ln K1 = Ln(A) - [Ea/R)*(1/T1)]..........(1)
⇒ Ln K2 = Ln(A) - [(Ea/R)*(1/T2)].............(2)
(1)/(2):
⇒ Ln (K1/K2) = (Ea/R)* (1/T2-1/T1)
⇒ Ln (K1/K2) = (116 KJ/mol/8.3134 E-3 KJ/K.mol)*(1/321.5 K - 1/298 K)
⇒ Ln (K1/K2) = (13952.37 K)*(- 2.453 E-4 K-1)
⇒ Ln (K1/K2) = - 3.422
⇒ K1/K2 = e∧(-3.422)
⇒ (3.32 E-10 s-1)/K2 = 0.0326
⇒ K2 = (3.32 E-10 s-1)/0.0326
⇒ K2 = 1.017 E-8 s-1
This equation is impossible. NaSO4 is non-existent. Did you mean Na2SO4?