Answer:
Initial Velocity is 4 m/s
Explanation:
What is acceleration?
It is the change in velocity with respect to time, or the rate of change of velocity.
We can write this as:

Where
a is the acceleration
v is velocity
t is time
is "change in"
For this problem , we are given
a = 1.2
t = 10
Putting into formula, we get:

So, the change in velocity is 12 m/s
The change in velocity can also be written as:

It is given Final Velocity = 16, so we put it into formula and find Initial Velocity. Shown Below:

hence,
Initial Velocity is 4 m/s
Answer:
The table can be used to predict the properties of elements, even those that have not yet been discovered. Columns (groups) and rows (periods) indicate elements that share similar characteristics.
The table makes trends in element properties apparent and easy to understand.
The table provides important information used to balance chemical equations. Atoms are important because they form the basic building blocks of all visible matter in the universe. There are 92 types of atoms that exist in nature, and other types of atoms can be made in the lab. The different types of atoms are called elements. Hydrogen, gold and iron are examples of elements comprised of unique types of a single kind of atom.
Explanation:
Answer:
Explanation:
Calories to be burnt = 3500 - 2500 = 1000 Cals .
Efficiency of conversion to mechanical work is 25 % .
Work needed to burn this much of Cals = 1000 x 100 / 25 = 4000 Cals.
4000 Cals = 4.2 x 4000 = 16800 J .
Work done in one jump = kinetic energy while jumping
= 1/2 m v²
= .5 x 70 x 3.3²
= 381.15 J .
Number of jumps required = 16800 / 381.15
= 44 .
Answer:
moving the circuit or the magnet gives the same result
Explanation:
The faraday effect establishes that the temporal variation of imaginative flow produces an electric potential
fem =
dfi / dt
the magnetic flux is
Ф = B. A = B A cos θ
suppose for simplicity that the angle is zero so cos 0 = 1
Φ = B A
By analyzing this expression, the change in magnetic flux can converge while keeping the magnetic field fixed and varying the electric field or keeping the electric field fixed and varying the magnetic field.
Consequently moving the circuit or the magnet gives the same result