Complete Question
The angular speed of an automobile engine is increased at a constant rate from 1120 rev/min to 2560 rev/min in 13.8 s.
(a) What is its angular acceleration in revolutions per minute-squared
(b) How many revolutions does the engine make during this 20 s interval?
rev
Answer:
a

b

Explanation:
From the question we are told that
The initial angular speed is 
The angular speed after
is 
The time for revolution considered is
Generally the angular acceleration is mathematically represented as

=>
=> 
Generally the number of revolution made is
is mathematically represented as

=> 
=> 
Answer:
3.1216 m/s.
Explanation:
Given:
M1 = 0.153 kg
v1 = 0.7 m/s
M2 = 0.308 kg
v2 = -2.16 m/s
M1v1 + M2v2 = M1V1 + M2V2
0.153 × 0.7 + 0.308 × -2.16 = 0.153 × V1 + 0.308 × V2
= 0.1071 - 0.66528 = 0.153 × V1 + 0.308 × V2
0.153V1 + 0.308V2 = -0.55818. i
For the velocities,
v1 - v2 = -(V1 - V2)
0.7 - (-2.16) = -(V1 - V2)
-(V1 - V2) = 2.86
V2 - V1 = 2.86. ii
Solving equation i and ii simultaneously,
V1 = 3.1216 m/s
V2 = 0.2616 m/s
The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Answer with Explanation:
"Red Blood Cells" <em>(RBCs)</em> contain <em>Hemoglobin</em> that is responsible for carrying oxygen into the body. When people are exposed to higher altitudes, <u>the number RBCs in the body increases</u>. This is because the body has a hard time taking in oxygen due to <u>low atmospheric pressure</u>. It makes it hard for oxygen to pass through the lung membranes. This is called "hypoxia." Such condition deprives the body from oxygen, thus, it creates more red blood cells in order to compensate the condition.
When it comes to people living at sea level,<em> the oxygen can easily pass through the lung membranes</em> due to <u>higher atmospheric pressure.</u> This doesn't require the body to build new RBCs. Therefore, the numbers of RBCs needed by people to thrive is lower than living at higher altitudes.