The distance at which the man slips is 0.3 m
Newton's Second Law, F = ma, is used to calculate the braking distance. By dividing the mass of the car by the gravitational acceleration, one may determine its weight. The weight of the car multiplied by the coefficient of friction equals the brake force.
Given-
mass of man= 70 kg
frictional coefficient μ=0.02
mass of body thrown= m2 = 3kg
let s be the stopping distance
we know that frictional force = F= μN
=μMg= 0.02 x 70 x 10
=14 N
∴acceleration, a= 14/70 = 0.2 m/s²
now on applying conservation of linear momentum
pi=pf pi=0 (initially at rest)
0=m1v1-m2v2 (v1= velocity of man) (v2=velocity of body= 8m/s
v1= m2v2 /m1= 0.3 m/s
we know,
v²- u² = -2as
0- (0.3) ²= -2 x 0.2 x 5
s= 0.09/0.4 ≈ 0.3 m
Learn more about distance here-
brainly.com/question/15172156
#SPJ4
You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)
Answer:
M₀ = 5i - 4j - k
Explanation:
Using the cross product method, the moment vector(M₀) of a force (F) is about a given point is equal to cross product of the vector A from the point (r) to anywhere on the line of action of the force itself. i.e
M₀ = r x F
From the question,
r = i + j + k
F = 1i + 0j + 5k
Therefore,
M₀ = (i + j + k) x (1i + 0j + 5k)
M₀ = ![\left[\begin{array}{ccc}i&j&k\\1&1&1\\1&0&5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%261%261%5C%5C1%260%265%5Cend%7Barray%7D%5Cright%5D)
M₀ = i(5 - 0) -j(5 - 1) + k(0 - 1)
M₀ = i(5) - j(4) + k(-1)
M₀ = 5i - 4j - k
Therefore, the moment about the origin O of the force F is
M₀ = 5i - 4j - k
Answer:
Explanation:
According to Newton's third law, every action has an equal and opposite reaction
so it tells us that the force exerted by the earth on the spacecraft is equal to the force exerted by the spacecraft on the earth. But we do not see the earth moving towards the spacecraft because the inertia of the spacecraft is very less than the inertia of the earth.
Answer:
R = 35.27 Ohms
Explanation:
Given the following data;
Voltage = 230V
Power = 1500W
To find the resistance, R;
Power = V²/R
Where:
V is the voltage measured in volts.
R is the resistance measured in ohms.
Substituting into the equation, we have;
1500 = 230²/R
Cross-multiplying, we have;
1500R = 52900
R = 52900/1500
R = 35.27 Ohms.
Therefore, the resistance which the heating element needs to have is 35.27 Ohms.