1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grin007 [14]
3 years ago
10

True or False: As the mass of an object increases, the gravitational pull increases

Physics
1 answer:
Lunna [17]3 years ago
7 0

Answer: The answer is obviously True!!!!

Explanation: The force of gravity depends directly upon the masses of the two objects, and inversely on the square of the distance between them. This means that the force of gravity increases with mass, but decreases with increasing distance between objects. ... However, the exponent on the mass terms is one.

You might be interested in
) each plate of a parallel-plate air-filled capacitor has an area of 0.0020 , and the separation of the plates is an electric fi
Dvinal [7]
I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:
\sigma=\varepsilon_0 \frac{V}{d}
Where V is the voltage between the plates and d is separation.
Voltage is by definition:
V=Ed
Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:
\sigma=\varepsilon_0 \frac{Ed}{d}=\varepsilon_0E\\
\sigma= 8.85\cdot10^{-12}\cdot 2.1\cdot 10^6= 0.0000185\frac{c}{m^2}
Please note that elecric permittivity of air is very close to  elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.

6 0
4 years ago
A car with a mass of 1.5 × 103 kilograms is traveling west at a velocity of 22 meters/second. It hits a stationary car with a ma
Licemer1 [7]
A. 14 meters/second to the west
3 0
3 years ago
Read 2 more answers
The current in a wire varies with time according to the relationship 1=55A−(0.65A/s2)t2. (a) How many coulombs of charge pass a
mario62 [17]

Answer:

(A) Q = 321.1C (B) I = 42.8A

Explanation:

(a)Given I = 55A−(0.65A/s2)t²

I = dQ/dt

dQ = I×dt

To get an expression for Q we integrate with respect to t.

So Q = ∫I×dt =∫[55−(0.65)t²]dt

Q = [55t – 0.65/3×t³]

Q between t=0 and t= 7.5s

Q = [55×(7.5 – 0) – 0.65/3(7.5³– 0³)]

Q = 321.1C

(b) For a constant current I in the same time interval

I = Q/t = 321.1/7.5 = 42.8A.

3 0
3 years ago
Read 2 more answers
In which of the two situations described is more energy transferred?
Furkat [3]

Answer:

More energy is transferred in situation A

Explanation:

Each of the situations are analyzed as follows;

Situation A

The temperature of the cup of hot chocolate = 40 °C

The temperature of the interior of the freezer in which the chocolate is placed = -20 °C

We note that at 0°C, the water in the chocolate freezes

The energy transferred by the chocolate to the freezer before freezing is given approximately as follows;

E₁ = m×c₁×ΔT₁

Where;

m = The mass of the chocolate

c₁ = The specific heat capacity of water = 4.184 kJ/(kg·K)

ΔT₁ = The change in temperature from 40 °C to 0°C

Therefore, we have;

E₁ = m×4.184×(40 - 0) = 167.360·m kJ

The heat the coffee gives to turn to ice is given as follows;

E₂ = m·H_f

Where;

H_f = The latent heat of fusion = 334 kJ/kg

∴ E₂ = m × 334 kJ/kg = 334·m kJ

The heat required to cool the frozen ice to -20 °C is given as follows;

E₃ = m·c₂·ΔT₂

Where;

c₂ = The specific heat capacity of ice = 2.108 kJ/(kg·K)

Therefore, we have;

E₃ = m × 2.108 ×(0 - (-20)) = 42.16

E₃ = 42.16·m kJ/(kg·K)

The total heat transferred = (167.360 + 334 + 42.16)·m kJ/(kg·K) = 543.52·m kJ/(kg·K)

Situation B

The temperature of the cup of hot chocolate = 90 °C

The temperature of the room in which the chocolate is placed = 25 °C

The heat transferred by the hot cup of coffee, E, is given as follows;

E = m×4.184×(90 - 25) = 271.96

∴ E = 271.96 kJ/(kg·K)

Therefore, the total heat transferred in situation A is approximately twice the heat transferred in situation B and is therefore more than the heat transferred in situation B

Energy transferred in situation A = 543.52 kJ/(kg·K)

Energy transferred in situation B = 271.96 kJ/(kg·K)

Energy transferred in situation A ≈ 2 × Energy transferred in situation B

∴ Energy transferred in situation A > Energy transferred in situation B.

3 0
3 years ago
___ + 3H2O + light —&gt; C3H6O3 + 3O2. What amount and substance balance this reaction?
Alik [6]

Answer:3H2O + light-c3h603+302

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • A person throws a ball straight up in the air. The ball rises to a maximum height and then falls back down so that the person ca
    12·1 answer
  • An object, initially at rest, is subject to an acceleration of 34 m/s2. how long will it take for that object to travel 3400 m?
    15·1 answer
  • Which of the following statements about electric field lines are true? (choose all that are true) a) They are only defined for p
    8·1 answer
  • How much work are you doing if you push on a 40 N rock that won't move?
    6·1 answer
  • Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc
    8·2 answers
  • Why can't you feel rhe force of attraction between you and mars
    6·1 answer
  • A 1000 Kg car traveling at 10 m/s hits the back of a 5000 Kg truck
    12·1 answer
  • Which form of energy is equal to the sum of an object’s kinetic and potential energy?
    8·1 answer
  • (1) Viewers of Star Trek hear of an antimatter drive on the Starship Enterprise. One possibility for such a futuristic energy so
    6·1 answer
  • An object with a mass of 8 kg moves at a speed of 5 m/s. How much kinetic energy does the object have?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!